Metallic Magnetic Calorimeters for spectrometry applications

Matias Rodrigues CEA-Saclay LNHB

DRTBT09 : 6ième école thématique Perspectives des détecteurs cryogéniques

Metallic magnetic calorimeter

- Physical principle
 - Choice of the paramagnetic sensor
 - The calculation of signal size
 - Intrinsic sources of noise
- Detector read out
 - SQUID read out and performances
 - SQUID-detector coupling
- Optimizations
 - Signal to noise ratio
 - Fabrication and experimental set-up

2

- Applications
 - •External sources
 - X ray spectrometry
 - Gamma ray spectrometry
 - Embedded source in the detector
 - Activity measurement
 - Beta spectrometry
 - MARE project

Physical principle of metallic magnetic calorimeters

Matias RODRIGUES DRTBT09 11/05/2009

Physical principle of calorimeters

5

Physical principle of magnetic calorimeters

 $\delta \Phi$ expressed in units of the magnetic flux quantum, $\Phi_0 = 2.07 \times 10^{-15}$ A/m

Calculation of thermodynamics quantities using statistical physics

Example for localized spin of 1/2 interacting with B

Zeeman Hamiltonian $H^{Zeeman} = -\vec{\mu} \cdot \vec{B}$

Two eigen energies $\varepsilon_{\pm} = \pm \mu B$ $\Delta E = \varepsilon_{+} - \varepsilon_{-}$

Partition function of a canonical ensemble $Z = \sum_{n=-L}^{J} e^{-\frac{\varepsilon_n}{kT}}$

Internal energy
$$\langle U \rangle = N \langle \varepsilon \rangle = N k_B T^2 \left(\frac{\partial \ln Z}{\partial T} \right)_B = -N \cdot \Delta E \tanh \left(\frac{\Delta E}{2k_B T} \right)$$

Magnetization
$$M = -\frac{N_{spin}}{V_{sensor}} \frac{\partial \langle U \rangle}{\partial B} = \frac{N_{spin}}{V_{sensor}} \frac{\Delta E}{2B} \tanh\left(\frac{\Delta E}{2k_BT}\right)$$

Spin heat capacity $C_{spin} = \left(\frac{\partial \langle U \rangle}{\partial T}\right)_V = N_{spin}k_B \left(\frac{\Delta E}{2k_BT}\right)^2 \frac{1}{\cosh^2\left(e^{\Delta E/2k_BT}\right)} \approx C_{sensor}$

Matias RODRIGUES

DRTBT09

7

Magnetization

Thermodynamics quantities for the signal

9

Ideal magnetic calorimeters for spectrometry

10

Each application requires a detection efficiency which fixes the absorber heat capacity.

One has to calculate the parameters *B*, T_{bath} , *x*, V_{sensor} , that maximize the Signal/Noise ratio.

For spectrometry applications one needs a fast rise time and high energy resolution.

Ideal magnetic calorimeters :

Large signal (strong dependence of the magnetization on the temperature No interaction between magnetic moments No additional heat capacities C_{sensor} = C_{spin}
 Fast rise time Strong coupling between spins and the absorber heat capacity large G_{sensor-absorber}

Different choices of magnetic ions and host

11

- Dielectric host
 - TmAG:Er, YAG:Er
 - CMN, CDP

High sensitivity but very long rise time due to a weak coupling between magnetic moments and phonons

- Metallic host
 - LaB₆:Er (large additional heat capacity at low T)
 - Au:Er (well known, stable)
 - Ag:Er

Reduced sensitivity due to exchange interaction between magnetic moments **but fast rise time** due to strong coupling between magnetic magnetics moments and conduction electrons

- Semi metallic host (unstudied)
- Semiconductor (unstudied)
 - Bi_2Te_3 ($E_g = 0,15 \text{ eV}$) doped with Er

Signal size for Metallic Magnetic Calorimeter using Au:Er sensor

Magnetic properties of AuEr. Er in cubic symmetry

• Electronic Zeeman interaction J = 15/2 $g_J = 6/5$ $H^{Zeeman} = g_J \mu_B \vec{B} \cdot \vec{J}$

13

Exchange interactions

Interaction between two localized spins S_i and S_i

Dipole – Dipole interaction

Coupling between two localized magnet

$$H_{ij}^{Dipole} = \underbrace{\frac{\mu_0}{4\pi} (\tilde{g}\mu_B)^2 (2k_F)^3}_{\Gamma_{\text{Dipole}}} \underbrace{\left(\frac{\tilde{S}_i \cdot \tilde{S}_j}{\tilde{S}_j} \right) - 3 \left(\frac{\tilde{S}_i \cdot \vec{r}_{ij}}{\tilde{S}_j} \right) \left(\frac{\tilde{S}_j \cdot \vec{r}_{ij}}{\tilde{S}_j} \right)}_{\Gamma_{\text{Dipole}}}$$

• RKKY interaction (Ruderman - Kittel - Kasuya - Yosida)

Interaction between two localized magnetic moments mediates through the conduction electrons and their magnetic moment (itinerant electrons).

$$H_{ij}^{RKKY} = J_{sf}^{2} \frac{\tilde{g}^{2}(g_{J}-1)^{2}}{g_{J}^{2}} \frac{4V_{p}^{2}m_{e}^{*}k_{F}^{4}}{\hbar^{2}(2\pi)^{3}} (\tilde{S}_{i} \cdot \tilde{S}_{j}) \frac{\cos(2k_{F}r_{ij}) - 1/2k_{F}r_{ij} \cdot \sin(2k_{F}r_{ij})}{(2k_{F}r_{ij})^{3}} (\tilde{S}_{i} \cdot \tilde{S}_{j}) \frac{\cos(2k_{F}r_{ij}) - 1/2k_{F}r_{ij} \cdot \sin(2k_{F}r_{ij})}{(2k_{F}r_{ij})^{3}}$$

 $\Gamma_{\mathsf{RKKY}} = 5.\Gamma_{\mathsf{Dipole}}$

RKKY interaction leads to spin glass transition at ~ 1 mK with 300 ppm erbium minimal T_{bath} ~ 10 mK

Thermodynamic quantities for the signal

15

Thermodynamic properties of AuEr can be calculated by mean field approximations or with Monte Carlo simulations.

Time structure of the signal

Matias RODRIGUESDRTBT0911/05/2009

Heat capacities and thermal conductances

If we use a gold absorber

$$C_{Au} = N \left(\gamma T + 234 \cdot k_B N \left(\frac{T}{\theta_D} \right)^3 \right) \qquad \gamma = 7.29.10^{-4} \text{ J/K}^2/\text{mole}$$
$$\theta_D = 162.4 \text{ K}$$

• C_{spin} electronic magnetic moments (Zeeman+exchange)

• C_{el} conduction electrons of Au:Er (~ 1% of C_{spin})

• C_{add} : interaction of the nuclear quadrupole moments of gold with the electric field gradient due to the presence of Er³⁺

• C_{Er168} : hyperfine interactions of the nuclear magnetic moments of Er¹⁶⁸. Using of enriched Er¹⁶⁶ or Er¹⁶⁷

<i>x</i> = 900 ppm <i>B</i> ~ 5 mT	\mathcal{c}_{Au} mJ/K/mole	C _{spin} mJ/K/mole	<i>C_{add}</i> mJ/K/mole
20 mK	0.015	1.8	~1/4 C _{spin}
30 mK	0.022	1.4	~1/5 C _{spin}

Thermalisation of the particle energy and pulse shape

We suppose heat diffusion through conduction electrons very fast

Fourier spectrum of the signal

Matias RODRIGUES DRTBT09

11/05/2009

20

Intrinsic sources of noise

Matias RODRIGUES DRTBT09 11/05/2009

Thermodynamic fluctuations of the energy

A simple canonical ensemble with one system.

$$\Delta U = \sqrt{\left\langle U^2 \right\rangle - \left\langle U \right\rangle^2} = \sqrt{k_B T^2 \left(\frac{\partial \left\langle U \right\rangle}{\partial T}\right)} = \sqrt{k_B T^2 C}$$

Low Temperature required!

$$E_{\text{Particle}}.\delta(t)$$

 C
 τ_d
 $T_o \sim 30 \text{ mK}$

 $T = 30 \text{ mK}, C = 1 \text{ pJ/K}, \tau_d = 1 \text{ ms}$

$$S_E = k_B C T^2 \frac{4\tau_d}{\left(1 + 2\pi f \tau_d\right)^2}$$

Matias RODRIGUES

DRTBT09

Thermodynamic fluctuations of the energy

Other intrinsic sources of noise

Magnetic Johnson noise, random motion of conduction electrons in metals from the sensor and the absorber

$$\sqrt{S_{\Phi}^{mag}} \approx \mu_0 \sqrt{\alpha \sigma k_B T V} \qquad f_c \approx \frac{1}{4 \cdot \mu_0 \cdot \sigma \cdot z \cdot t}$$

Depends strongly on the way the sensor is coupled to the SQUID

Matias RODRIGUES DRTBT09 11/05/2009

Signal to noise ratio

(Fundamental limit from thermodynamic fluctuations FWHM = 24 eV)

Matias RODRIGUES

DRTBT09

11/05/2009

How to read the magnetization of the sensor

Matias RODRIGUES DRTBT09 11/05/2009

SQUID

Matias RODRIGUES DF

DRTBT09

Two stage SQUID set up

How to couple the magnetization of the sensor to the SQUID

Matias RODRIGUES DRTBT09 11/05/2009

Direct coupling

Flux transformer

Pick-up coil

$$G_{in} = N_{turn} \frac{M_{in-SQ}}{L_{pick-up} + L_{input} + L_{w}}$$

Optimised for

$$L_{pick-up} = L_{input}$$

$$L_{w} \rightarrow 0$$

$$\sqrt{S_{\Phi,SQUID}^{pick-up}} \propto \sqrt{L_{pick-up}}$$

Advantage

- Sensor thermally decouple from SQUID chip
- Possibility to read large sensor, required for applications needing a large absorber

Disadvantage

- Signal to SQUID noise ratio is smaller by a factor 2 at least
- Sensitive to magnetic Johnson noise

35

Flux transformer with meander shaped pickup coil

36

Field distribution

Optimization, fabrication and experimental set-up

Matias RODRIGUES DRTBT09 11/05/2009

- T_{bath} as low as possible but > 10 mK and fixed by the cryostat
- $C_{absorber}$ as small as possible but fixed by the application
- Signal size as large as possible but < 1 Φ_{0} in the SQUID loop
- τ_d as long as possible but limited by the count rate
- $B_{opt} \propto T_{bath}$
- $x_{opt} \propto T_{bath}$
- Signal $\propto C_{absorber}^{1/3}$

Meander shaped pick-up coil

AuEr sensor

Sputtering of the AuEr

Wiring

In the cryostat

Dilution or ADR cryostat

11/

SQUIDs of preamplification : *T* reguled between 1.5 and 4.2 K

Thermalisation of the wires and filters

Detector stages. -Temperature regulation ` with a PID at 15 to 20 mK \pm few μ K

KIRCHHOFF INSTITUT FÜR PHYSIK

Application External sources

KRISS KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE

Le progrès, une passion à partager

Matias RODRIGUES

DRTBT09

X ray spectrometry

Т	C _{absorber} (pJ/K)	C _{sensor} (pJ/K)	β	<i>B</i> (mT)	δΦ/6 keV (Φ ₀)	SQUID noise $\mu\Phi_0/\text{Hz}^{1/2}$	FWHM (eV)
30 mK	0.11	0.073	0.39	8	1.4	0.6	0.94
50 mK	0.19	0.067	0.26	12	0.65	0.6	2.2

Absorber: $\pi x 150 x 150 x 3 \mu m 3 \implies 95 \%$ detection efficiency at 6 keV

KIRCHHOFF

INSTITUT FÜR PHYSIK

X ray spectrometry

DRTBT09

Gamma spectrometry

Le progrès, une passion à partager

Τ	C _{absorber} (nJ/K)	C _{sensor} (nJ/K)	β	I (mA)	<i>δ</i> Φ/100 keV (Φ ₀)	SQUID noise $\mu\Phi_0/Hz^{1/2}$	FWHM (eV)
30 mK	0.5	0.41	0.45	80	0.17	0.5	45

Absorber: $\pi x 0.5 x 0.5 x 0.3 \text{ mm}^3 \longrightarrow 60 \%$ intrinsic detection efficiency at 100 keV

Gamma spectrometry

Application Embeded sources

Matias RODRIGUES DRTBT09 11/05/2009

Absolute activity measurement of 55Fe

Source enclosed inside the absorber

4 p detection geometry

Gold absorber: high stopping power thickness 12 μ m: \geq 99.9 % absorption for electrons and photons up to 6.5 keV high detection efficiency

Matias RODRIGUES

DRTBT09

52

11/05/2009

Matias RODRIGUES

DRTBT09

KIRCHHOFF INSTITUT FÜR PHYSIK

Beta spectrometry

53

Using 1x1 mm² meander pick-up coil Absorber 800x800x500 μm^3 Calibration source (⁵⁷Co) N(V) 750 000 counts - Feldman / Wu 1952 - Johnson 1956 (3.2 cps) - Willett 1967 - Sastry 1972 ΔE = 750 eV à 122 keV - Reich 1974 - MMC 2005 ··· Theorie C(W) Sadler 1993 200 400 600 0 Energie [keV] Matias RODRIGUES DRTBT09 11/05/2009

Flux transformer with meander shaped pickup coil

$$G_{in} = \frac{M_{in-SQ}}{L_{meander} + L_{input}}$$
$$L_{meander} \propto \frac{A_{meander}}{p}$$
$$G_{mag} ?$$
$$B ?$$

Advantage

- Advantages of a flux transformer
- No external field coil
- Insensitive to external magnetic field, Johnson magnetic noise
- Microfabrication of arrays

Disadvantage

- Large current in the SQUID input coil
- Microfabrication

Matias RODRIGUES DRTBT09

MARE project, neutrino mass

Matias RODRIGUES DRTBT09

Thank you for attention

Matias RODRIGUES DRTBT09 11/05/2009

AgEr could be a better choice below 20 mK even if the RKKY interaction is stronger than for

Matias RODRIGUES

DRTBT09

Matias RODRIGUES DRTBT09 11/05/2009

6 cm

The activity of the source was measured with a HPGe detector

Matias RODRIGUES

DRTBT09

Germanium Z = 32

Gold Z = 79

Matias RODRIGUES DRTBT09

Matias RODRIGUES DRTBT09