

Kinetic Inductance Detectors

- INTRINSICALLY MULTIPLEXABLE
- FABRICATION MUCH EASIER
- NEW CONCEPT, STILL TO BE STUDIED

Which applications ?

mm and sub-mm wave astronomy
high energy resolution X-rays
Optical Astronomy
Dark matter and Neutrino
....many others to be proposed...

DEFINITELY YES PROBABLY NOT POSSIBLE, but ... PROBABLY YES SURE

Multiplexing schemes

TIME-DOMAIN

Reading-out one detector at a time.

Examples:

TES (NIST, APC, Germany)
Semiconductor bolometers
e.g. CEA for Herschel, Néel for NbSi bolometers

ADVANTAGE: simple DRAWBACK: few, «slow» pixels*

* Remark valid for LTDs only.

(RADIO) FREQUENCY-DOMAIN

Each detector is associated to a frequency f_i . f_i ; i=1,2 N

Each detector has a Δf available (speed). $\rightarrow N \cdot \Delta f$ is roughly the total band we need.

If N and/or ∆f is large (usually desired) → Need enough space in frequency domain → RF (pixels broadcast)

e.g. $\Delta f = 1$ MHz, N=1000 \rightarrow 1GHz

ADVANTAGE: many, «fast» pixels DRAWBACK: ?? Let see ??

High Quality Factor Superconducting Resonators

MULTIPLEXING FIRST !! RF and f-DOMAIN IS THE BEST OPTION. HOW ? High MUX factor \rightarrow closely packed in f \rightarrow

Resonating structures (high Q) → SUPERCONDUCTORS T<<T_e

Parallel C-coupled resonators = MUX scheme ≠ Detectors Can the MUX scheme be transformed into a Detector ? DEFINITELY !

Some typical dielectric waveguides

Centred stripline

Off-centred stripline

Comparison

 $\leftarrow \text{ No cut-off frequency } \rightarrow$

 $\begin{array}{lll} \leftarrow \mbox{ homogenous } & \mbox{inhomogenous } \rightarrow \\ \Rightarrow \mbox{ no dispersion } & \Rightarrow \ensuremath{\mathcal{E}_{e\!f\!f}}\ \mbox{and Z_0depend } \\ \Rightarrow \mbox{ no impedance } & \mbox{on frequency } \\ & \mbox{mismatch } & \Rightarrow \mbox{dispersion and } \\ & \mbox{impedance mismatch } \end{array}$

 ← Good isolation between adjacent traces can be achieved

Can be fabricated using planar technology

Are sensitive on the material above

Microstrip line

 \rightarrow

Grounded coplanar waveguide

Each transmission line can be represented as series inductances and shunted capacitances

$$\frac{dL}{dC} = \frac{dL}{dC} = \frac{dL}{dC} = \frac{dL}{dC} = \frac{dL}{dC}$$

$$\frac{dL}{dC} = \frac{dL}{dC} = \frac{F}{m}$$

$$\frac{dL}{dC} = \frac{F}{c}$$

$$\frac{dL}{dC} = \frac{F}{c}$$

$$\frac{dL}{dC} = \frac{F}{c}$$

$$\frac{dL}{c} = \frac{F}{c}$$

$$\frac{dL}{c} = \frac{F}{c}$$

$$\frac{dL}{c} = \frac{F}{c}$$

$$\frac{F}{c}$$

$$\frac$$

 $Z_0 = 50\Omega; v_{phase} = 2 \cdot 10^8 = 0.7c$ 6

High-Q resonators

Dissipation of energy due to:

- Loss in the resonating transmission line (dielectric and superconductor)
 → Q,
- The resistance Z_0 at both ports $\rightarrow Q_c$

$$S_{21} = \frac{S_0 + 2iQ_0\delta x}{1 + 2iQ_0\delta x}.$$

$$Q_0 = \frac{Q_c Q_i}{Q_c + Q_i} \quad S_0 = \frac{Q_c}{Q_c}$$

Total (measured) Q factor and minimum transmission.

Resonating frequency

 $f_0 \cong \frac{1}{4l\sqrt{(L_K + L_G)C(\epsilon)}},$

Linear dependence on 1. <u>Assuming:</u> $\Delta I/I = 10^{-4} (\Delta I = 2 \mu m; I = 20 mm) = \Delta f/f$ $\rightarrow \Delta f = 0.4 MHz @ f = 4 GHz$

Readout

11

KINETIC INDUCTANCE DETECTORS

Two-fluid model

Supercarriers Additional losses (Q_i) Normal carriers

<u>Model:</u> two separate populations of current carriers co-exist in a finite T superconductor. So each superconducting strip is seen as a parallel of « normal resistance » (quasi-particles) and « super-inductance » (Cooper pairs).

In AC the « super-inductance » is no longer a zero impedance shunt

 \rightarrow Quasi-particles losses for any finite T superconductor in AC.

 \rightarrow Additional losses (e.g. dielectrics) always present to limit Q_i even at T \rightarrow 0²

Kinetic Inductance: we have a detector !!

Switch on the light

 f_0

ΔA

Δθ

Dark, T<<Tc

Light: increase in L_k Change in phase ($\Delta \theta$)

Light: increase in R Change in amplitude (ΔA)

14

A superconducting resonator is very sensitive to

the kinetic inductance (strictly speaking KIDs)

- \rightarrow photon detection (ONLY if incident radiation hv > 2 · E_{gap} \approx 3.6 · kT_c)
- \rightarrow temperature dependence (if T > 0.2·T_c ... otherwise not so sensitive)
- \rightarrow measurement of the penetration depth λ_{L} (if T > 0.2 · Tc ... otherwise frozen at λ_{0})

the EM environment

- \rightarrow characterization of materials and the change of \mathcal{E}_r with temperature
- \rightarrow measurement of the loss tan δ in the surrounding dielectric medium and of the attenuation constant α . Sensitive to losses in the ground plane.
- \rightarrow small changes in the geometry (e.g. nano-mechanics, hydrodynamics)

MATERIALS FOR LOW-ENERGY PHOTON DETECTIONS

Examples: Ti \rightarrow f_c \approx 40GHz Al \rightarrow f_c \approx 90GHz Re \rightarrow f_c \approx 130GHz Ta \rightarrow f_c \approx 340GHz Nb \rightarrow f_c \approx 700GHz NbN \rightarrow f_c \approx 1.2THz

. . .

e.g. Al

16

Sensitivity

<u>Two possible measurements on the complex S21 (transmission) plane:</u> radius (amplitude) and azimuth (phase).

 \rightarrow

$$\delta\theta = \left[2Q_i^2/(Q_i + Q_e)\right](\delta f/f_0) \cong 2 \cdot Q \cdot (\delta f/f)$$

The Q factor and the resonator volume determine directly the sensitivity.

Noise Signal
NEP =
$$S_x(\omega) \cdot \left(\frac{\eta \tau_{qp}}{\Delta} \frac{\partial x}{\partial N_{qp}}\right)^{-1} \cdot \sqrt{1 + \omega^2 \tau^2_{qp}}$$

$$\frac{d\theta}{dN_{qp}} = 1.63 \times 10^{-7} \frac{\alpha Q}{V}, \label{eq:delta_qp}$$
 All

B. Mazin, PhD thesis, Caltech 2004

high-Q (film quality, design), low V (design, technology), long τ_{qp} (film quality, impurities ... still unclear)

Noise: phase vs. amplitude read-out

Still some **excess noise** in phase readout. New results seem to indicate it's originating at the **metal/substrate interface** (but where ?).

Amplitude read-out already OK for many applications (e.g. ground-based) However, for pushing S/N to the limit it is better to **understand and kill** the phase noise.

Excess Phase Noise

Credit: Omid Noroozian, Caltech (2008)

A semi-empirical model now available !! Work mainly carried out in the US.

Excess Phase Noise: first hints

To reduce *noise*: make **fat** CPW near the coupler end.

To maintain high *sensitivity*: make **narrow** CPW near short circuit to have higher sensitivity.

SMA connector PORT 2

SMA connector PORT 1

50Ω launcher (coax-to-planar transition) Chip with many resonators

cnrs

A very interesting effect

The amplitude and the different quality factors don't show anything special. But the frequency points clearly an effect.

Solution: Let's see what people did in 1950 (Phys. Rev., Vol.80 Nr.8 Page 89, 1950)

The Dielectric Constant of Liquid Helium

- During decreasing temperature ε increases
- At 2.17 K helium gets superfluid
- \rightarrow first order phase transition
- Below this critical temperature ε starts to decrease

Resonances on Sapphire (1.8 K < T < 4.2 K)

 Q_{c}, Q_{i}

25

Helium Detectors (Grenoble)

NbN

$$\delta \epsilon_{He}^{min} \cong 2\epsilon \sqrt{\frac{k_B T_n}{2P_s}} \left(\frac{Q_i + Q_e}{Q_i^2}\right)$$

<u>Achievable sensitivity:</u> 10⁻¹⁰ε₀/Hz^{1/2} !! Designed, fabricated and tested high-Q (10⁵) NbN resonators
Demonstrated a highly sensitive LHe detector for hydrodynamics applications
(APPLIED PHYSICS LETTERS 93, 134102)
In progress ..

NbN resonators on Si+SiO₂ (1.8 K < T < 4.2 K)

Mag vs. Freq, in dependence of Temp

Resonances on Si/SiO₂in dependence of temperature

12

a, [10⁴]

0

 Δ

-0 6

27

3

0

Δ

0

 \bigtriangleup

5

2.5

Temp [K]

0

6

5

3.3386

2

3.326

2

3

Temp [K]

4

Materials for MKIDs

- Al	$T_{c} = 1.2 K$	mm-wave detection (down to 90GHz)
- Tì	$T_{c} = 0.5 K$	mm-wave (down to 40GHz)
- Nb	T_e = 9 K	THz detection (from 700GHz), transmission lines, filters
- NbN	$T_c = 16 K$	Hydrodynamics, THz
- Re	T _e = 1.7 K	Neutrino mass, mm-wave detection, X-rays
- Ta	$T_{c} = 4.5 K$	X-rays absorber, visible-NIR single photons
CIDITIO	DING UTIT	DIA DODATION

SPUTTERING or UNV EVAPORATION
 BETTER IF HEPITAXIALS (substrate matching)

Bolometers vs KIDs

Bolometers:

- Sensitivity depends on thermal decoupling, so it's IN PRINCIPLE adjustable
- Easier to decouple the absorber from the thermistor (particularly
- important for higher energy spectroscopy applications)
- Big arrays made by weak multiplexing and brute force
- Complicated fabrication processes
- Heavy, expensive, complicated low-T electronics (SQUIDs, JFETs, MUX ...)

-

<u>KIDs:</u>

- Sensitivity is limited by quasi-particles lifetime (not yet under control)
- Quasi-particles transport still difficult (see STJs)
- Better suited for giant arrays
- Easier to fabricate, extremely robust
- Less sensitive to T fluctuations; in principle doesn't requires very low T_{base}
- Tumultuous R (big) & D (small) phase ongoing (more fun..)

A look around (mm-wave astronomy)

common feedline

Lossy line over the resonators (USA)

MKIDCAMERA for the Caltech Sub-mm Observatory (CSO)

Antenna IN THE resonator (SRON 2005-)

Being developed for SPICA satellite (200um), NIKA-IRAM (2mm) and now also APEX (1mm) 32

Lumped Element KIDs (Cardiff, Grenoble, Roma)

Distributed vs. Lumped Element ResonatorsLEKID

LEKID - f ~ 6 GHz

0.1 mm

Distributed KID - total length 6 mm. f ~ 6 GHz

NICA : the Neel IRAM Cardiff Array !!!

A KIDs European Camera for IRAM: the Nèel Iram KIDs Array "NIKA"

Target: Summer 2009

LEKIDs design for IRAM (v.0)

81 pixels LEKIDs array. Now we're at version 1 (CPW and 196 pixels). Measured preliminarly optical NEP around 10^{-15} W/Hz^{0.5}, limited by poor film quality and excess phase noise \rightarrow the pixel is absorbing the 2mm radiation !!

LEKIDs (1st order) radiation coupling

Incoming radiation

Si substrate t
$$\approx \lambda_{\rm Si}/4$$

Cavity
$$d \approx \lambda_{vacuum}/4$$

Backshort (SC)

 $R_{_{\square}} \approx 1\text{-}2\Omega$ for 40nm Al at low-T

The incoming wave is « terminated » with an effective $Z = R_{\Box} \cdot D/W_L$ that can be $\approx Z_{Si} = 377/\epsilon_r^{0.5} \approx 100\Omega$

Mean Optical Absorption over 125-170GHz can reach 80% even without an additional AR coating.

D = distance between lines $W_L = meander$ line width

See S. Doyle PhD thesis for more details and 2nd order effects (e.g. meander inductance...)

37

NIKA goals

M7

<u>On the cryostat (horizontal):</u> - M7 (flat) - M8 (x-y 2nd degree polyn.) at the IRAM focal plane (f/10) <u>In the cryostat:</u> - 4 K HDPE lens - 100 mK HDPE lens

Cryostat window

<u>Pixel pitch:</u> <u>Array dimensions:</u> <u>Number of pixels:</u> <u>Read-outs:</u> 1.6 mm (λ = 2.05mm, f/1.7 optics → Nyquist)
32×32 mm²
20×20 (2.4×2.4arc-min, pixels spacing 7.2 arc-sec)
REALLY low-cost FPGA (up to 32 channels)
FFTS (SRON, "best efforts basis"): all the 400 channels

Number of cables from the cryostat: 2 coax (f < 8 GHz), 3 for preamplifier bias.

Perspectives: large FoV

IRAM is going to **increase the 30-m field-of-view**. Several options, with different complexities and costs, are under study. From 12' downwards.

The "NèelCam", with the **present IRAM optics**, could take **up to 6**' (requires to reduce a bit the IRAM focal length for fitting the 6' on the existing, small M3)

That will require, for Nyquist at 2 mm, a **48×48 (2000 pixels) array**. If the FFTS read-out is working, feasible with a total of 4 coax cables.

... we'll see

S-Z in clusters of galaxies

S-Z for the deep Universe

SZ contours are 0.75 μK and X-ray scales are the same.

Z = 0.17 Z = 0.54 Z = 0.83

SZ particularly important for deep studies (z > 1). Formation and evolution of clusters, Cosmology.

DATA SHEET ON-A-STAMP

- 30 m dish at Pico Veleta (2850m)
- PSF OK down to 0.8 mm
- Hetherodyne and Bolometers
 MAMBO2 -117 pixels. f = 240GHz
 Horn-coupled; HPBW =11",
 pixel spacing = 20".

Brand new European consortium for a KIDs 2-mm demonstrator at IRAM:

FRANCE: Grenoble (Nèel, LAOG, IRAM). Cryostat, optics, LEKID, digital readout electronics (32 channels), detectors design and fabrication.
UK: AIG Cardiff. Filters, LEKID, digital electronics.
Holland: SRON Utrecht and Groningen: antenna-coupled KIDs design + fabrication Italy: La Sapienza Roma: LEKID design, software.

High energy resolution X-rays Optical/NIR Neutrino mass

....

X-rays (Caltech, Cambridge)

Optical Camera (UCSB)

From B. Mazin website

An Optical/UV Camera for the Palomar 200" Telescope

GOAL Build a MKID-based photon counting, imaging spectrophotometer with 64x20 pixels, an energy resolution R~20, and 5 microsecond time resolution. This project is a rare example of an extremely exciting instrument that is small enough for a studens and post-docs to play an integral part.

STATUS Final array development. Expected first light in December 2009.

Possible science case: GRB fast follow-up. Competing with AMICI prisms + CCD instruments (e.g. REM, ...). ADVANTAGE: photon-counting

MARE – Microcalorimeters Arrays for a Rhenium Experiment

Growing interest in Grenoble to develop high-quality Re resonators for MARE and q-bits. Epitaxial Re on Shappire \rightarrow hopefully very high Q (in progress) SOME NEW IDEAS FOR MARE (version « resonators » \neq KIDs) WE'RE SLOW DUE TO NIKA ... HOPEFULLY BETTER FROM SEPTEMBER 2009 ...

Conclusions: KIDs or not KIDs ?

- Groups in Europe REALLY working on KIDs (to my knowledge)

- SRON Holland
- University of Cardiff
- Grenoble Néel
- Roma La Sapienza
- Cambridge
- Karlsrhue

3 full-time researchers 1 full-time researcher 1.5 full-time researchers 1 full-time post-doc + 1 PhD ??? But not a lot of people 1-2 full-time

- In any case less than 10 people. Largely "inexpert" researchers.
- Not to mention the financial resources ..

Despite that, strongly competing in the mm and sub-mm domain with the longdeveloped (and expensive) bolometers (TES, doped Si, NbSi etc.).