DRTBT09 : 6^{ième} Ecole Thématique Perspectives des Détecteurs Cryogéniques

Matrices de bolomètres pour l'astrophysique millimétrique

Ph. Camus Le 12 mai 2009

Plan

- Motivations
- Propriétés élémentaires de OEM
- Structures classiques
- Imagerie avec des antennes planaires
- Prospectives

Motivations

- Sensibilité instrumentale
 - Détection de sources ponctuelles
 - Vitesse de cartographie

• Meilleure utilisation du plan focal

• B_{max} @ 160 GHz

Formation d'étoiles dans les galaxies

Décalage vers le rouge des galaxies

• Détecteur thermique

- Système macroscopique
- Mesure de l'échauffement résultant de l'absorption du rayonnement

Crédit thèse V.Reveret, 2004

- Thermomètre = élément résistif
- Meilleur détecteur large bande dans la gamme 200µm - 3mm

• BLIP si
$$T < 0.1K \bullet \frac{3mm}{\lambda}$$

Number of pixels with time

(Crédit L. Rodriguez)

UTK14 JCMT (Mauna Kea, 1988)

Propriétés élémentaires des OEM

Onde plane dans le vide

 $\lambda_0 = \frac{c}{f}$ $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3.10^8 \, m/s$ $\frac{E}{H} = Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377\Omega$

$$R = \left(\frac{1-n}{1+n}\right)^2$$
$$T = \frac{4n}{\left(1+n\right)^2}$$

Onde plane dans un diélectrique

$$\lambda = \frac{\lambda_0}{n}$$
$$n = \sqrt{\varepsilon_r}$$

$$\frac{E}{H} = Z = \frac{Z_0}{n}$$

Onde plane dans un métal normal

$$E^{+}(z) = E^{+} \cdot e^{-\frac{z}{\delta} \cdot (1+j)} \quad avec \quad \delta = \sqrt{\frac{2}{\sigma \mu_{0} \omega}}$$

 $Rc = \rho/e=Z_0/2$ A = 50% Rc= ρ /e = Z₀ A = 100% @ d = λ/4+k λ/2 Cas d'un métal supraconducteur (modèle à deux fluides de Gorter-Casimir)

$$\sigma(\omega) = \sigma_1 - j \cdot \sigma_2 = \sigma_n \cdot t^4 - \frac{j}{\mu_0 \lambda_L(0) \cdot \omega} \cdot (1 - t^4)$$

où $\lambda_L(0)$ est la longueur de London à température nulle et t=T/Tc.

[Tinkham, Introduction to superconductiviy, 2nd Edition, Mac Graw Hill, 1996]

Comme une couche continue si f << fC

$$R_C = rac{
ho}{e} \cdot rac{l}{W}$$

Formalisme des matrices de transfert

$$\begin{pmatrix} E_1 \\ H_1 \end{pmatrix} = \begin{bmatrix} ch(\gamma d) & Z_C \cdot sh(\gamma d) \\ \frac{1}{Z_C} \cdot sh(\gamma d) & ch(\gamma d) \end{bmatrix} \cdot \begin{pmatrix} E_2 \\ H_2 \end{pmatrix}$$

$$T = \prod_{k=1...n} T_k$$

...Voir thèse V. Reveret, 2004

Structures classiques

Avec ou sans cônes ?

Tache de diffraction $\sim F\lambda$ => Nyquist 0,5 F λ

M. J. Griffin et al., The relative performance of Filled and Feedhorn-Coupled Focal Plane Architecture, 2002

Matrice Bolocam (Glenn, 2002)

$$A = 1 - R - T = \frac{4g_a Z_0 l}{(2 + g_a Z_0 l)^2}$$

Matrice Herschel/SPIRE

(G. Chattopadhyay et al., IEEE Trans. Microwave Theory and Tech., 51 (10), October 2003

FEED HORN AND CAVITY DIMENSIONS

Array	λ_0	Length,	Aperture,	Waveguide	Waveguide
	(μm)	L (mm)	A (mm)	Dia., D (μm)	Length, W (μ m)
P/SW	250	23.68	2.40	171	500
P/MW	363	32.75	3.23	239	700
P/LW	517	46.36	4.90	342	1000
S/SW	275	23.68	2.15	190	550
S/LW	450	46.36	3.80	393	900

FEED HORN AND CAVITY DIMENSIONS

Array	λ_0	Length,	Aperture,	Waveguide	Waveguide
	(μm)	L (mm)	A (mm)	Dia., D (μm)	Length, W (μ m)
P/SW	250	23.68	2.40	171	500
P/MW	363	32.75	3.23	239	700
P/LW	517	46.36	4.90	342	1000
S/SW	275	23.68	2.15	190	550
S/LW	450	46.36	3.80	393	900

Matrices pour Olimpo

Télescope Cassegrain submillimétrique, diamètre 2.6 m

 télescope f/D = 3.5
 => grand champ (30 arcmin) => angle d'ouverture 16°

• pouvoir de résolution à 2mm : 3.2 arcmin

Cryostat 300mK, 4 bandes de fréquences

canal	fréquence (GHz)	longueur d'onde (mm)	charge optique (pW)	NEPphoton (10 ⁻¹⁶ W/Hz ^{1/2})	conductivité de la membrane (nW/K)
1	150	2	1,5	0,17	0.05
2	220	1.4	2,0	0,24	0.07
3	350	0.85	11	0,71	0.33
4	545	0.55	50	1,9	1.7

- canaux I, II : 19 (37) pixels TES

-> Cardiff

- canaux III, IV

: 23 pixels sur wafer 2 pouces -> DCMB (NbSi)

- conductivité typique des membranes SiN utilisées : 1nW/K

=> sans structuration des membranes, seulement détecteurs pour les canaux 3 et 4 envisageables

Cavite intégratrice

50

- cavités $\lambda/4$ derrière la matrice pour un maximum d'absorption

- la distance entre la sortie des cornets et le détecteur est également critique => $\lambda/4$

-Calcul électromagnétique (Microwave Studio / HFSS)

à 350 GHz : 2 - 3 modes pour lesquels $f_c < f$

à 545 GHz : 6 mod

: 2 - 3 modes pour lesqueis : 6 modes

paramètre de la simulation: distance sortie cornet – détecteur (même mode)

Absorbeur

Géométrie:

- carrés de l = 50 μ m; largeur de ligne w = 2 μ m
- $\rm R_{_{\rm O}}$ adapté à l'impédance du vide: $\rm Z_0$ w/l ~ 15 Ω

Considérations sur les matériaux:

- Au limite de continuité à 20nm
- Pd chaleur spécifique importante
- Nb supraconducteur aux fréquences intéressantes (E_{gap} -> 700GHz)

-> Al, Ti, ...

-> nouveaux masques 100 μ m x 2 μ m

 $R_{_{\Box}} \simeq 7.5 \ \Omega$

matériau	épaisseur (nm)	R/carré (Ω) à 300K
Au	15	7 – 20
Au	20	2
Au	27	1.4
Pd	15	54
Pd	20	16
Pd	25	15

Thermomètre NbSi

Nb_xSi_{1-x}:

-> 1-5 MΩ adapté à l'électronique de lecture

-> composition x optimale = f (T_{fonct} = 350 mK)

-> effet de champ et découplage électron/phonon

$$\rho(T_{el}, E) = \rho_0 \bullet \exp\left[\left(\left(\frac{T_0}{T_{el}}\right) \cdot \left(1 - \frac{E}{E_c}\right)\right)^n\right]$$
$$E_C = \frac{2 \cdot k_B \cdot T_{el}}{q \cdot L_{LOC}}$$

$$\frac{E^2}{\rho} = G_{e-ph} \cdot \left(T_{el}^5 - T_{ph}^5\right)$$

 $E_c \sim 5000$ V/m; $G_{e-ph} \sim 80$ W/cm³/K⁵

Volume de la couche : $\Omega \ge 10 \cdot \frac{P_{el}}{G_{e-ph}} \cdot T_{ph}^5$ Distance inter - électrode : $l \ge 20 \cdot \frac{P_{el}}{I \cdot E_c}$

Figure 1 : Influence de la composition sur la sensibilité relative A= - dlnR/dlnT

Fabrication

wafer 2 pouces, épaisseur 300µm (mieux adaptée à la prégravure RIE)

- 1. membranes : face avant 500nm SiN low stress; face arrière 1µm SiN LF
- 2. ouverture de SiN en face arrière RIE
- 3. lift-off grille
- 4. lift-off thermomètre
- 5. lift-off électrodes
- 6. lift-off plots de contacts

- Pd, Au, Al, Ti
- NbSi 100 nm + recuit 125°C pendant 2h
- Nb / Ir 40 nm / 10nm
- Au 200 nm
- 7. prégravure membranes DRIE (jusqu'à ~ 30.. 50 μm)
- 8. fin de gravure en voie humide TMAH ou gravure gazeuse XeF2

Le XeF₂ se présente sous la forme solide. Il passe à l'état gazeux à environ 3,8 Torr à 25 °C.

Le silicium se grave de façon isotrope très sélective jusqu'à (1000:1) vis à vis du SiO₂, du nitrure de silicium, de l'aluminium....

Membranes ajourées en nitrure de silicium 4x4 mm épaisseur 500 nm.

Conduction dans les membranes SiN

Approche microscopique pour la conductivité thermique:

- $\kappa(T) = C_V * v * I / 3 C_V (J/K/m^3)$ capacité thermique par volume
 - v vitesse de son
 - I libre parcours moyen des phonons
- à "haute" température l est limité par des processus Umklapp

- en dessous de 20K, l est limité par la diffusion sur des défauts cristallins et des impuretés

- dans des matériaux amorphes comme SiN, I est limité par la diffusion par le désordre

-> transport diffusif

- longueur d'onde des phonons $\lambda \sim 1/T$

-> à très basses température I devient plus grand que la taille du dispositif (typiquement 1mm à 100mK)

- -> diffusion à la surface
- -> transport radiatif

Modélisation de la fuite thermique:

 $P(T) = G (T^n - T_{bain}^n)$, où $G (W/K^n)$ ne dépend pas de $T = g (W/K) = \Delta P/\Delta T = n G T^{n-1}$

<u>transport diffusif:</u> g(T) = F κ (T), où F (m) est un facteur géométrique

Exemples :

- transport dans une membrane circulaire : $F = 2\pi t / \ln(R_{out}/R_{in})$, où t est l'épaisseur - transport dans N poutres de largeur w, longueur L et épaisseur t: F =w t N/L

transport radiatif :

g(T) = 4 σ S_{ph} ξ T³, c'est-à-dire n=4

-S_{ph} surface émettrice de phonon (section perpendiculaire au flux de chaleur)

- ξ caractérise la réduction de g due à la diffusion de surface:

 $\xi = 1 - réflexion spéculaire$

 ξ_{min} – "Casimir limit" – réflexion diffusive à la surface

Limite des bolomètres suspendus

(H. Hoevers, SRON) Limite conductivité – 4.10⁻¹⁹ W/Hz^{1/2} @ 100mK

Matrices ARTEMIS

Adaptation pour le mm Thèse V. Reveret, 2004

Matrices Scuba2

- Support Si pour homogénéité de la température de l'absorbeur et ¼ onde
- Chauffage pour ajuster le TES !

	Target specifications for SCUBA-2 pixels				
	850µm	450μm	Units	Notes	
Background	7	92	pW (minimum)	Prediction from	
power	19	150	pW (maximum)	model	
Design pixel	30	200	pW per pixel		
power level	0.2	1.3	μW per focal plane		
Target Tc	100 - 120	200	mK		
Target G	~1700	~5000	pW/K		
Likely C	6.5	11	pJ/K	Dominated by TES	
Bias power	5 to 10	5 to 10	pW	To reduce ETF	
Minimum photon noise level	6.5	33	$10^{-17} \text{ W}/\sqrt{Hz}$		
Phonon and Johnson Noise	1	9	$10^{-17} \text{ W}/\sqrt{Hz}$		
Mux chip power dissipation	3 to 4	3 to 4	μW per focal plane	Depends on bias power level used	
Time constant target	1-2	1 -2	msecs		
Distant pixel to pixel cross talk	<0.3	<0.3	%		

Imagerie avec antennes planaires

Séparation complète des fonctions

- Couplage oem
- Dissipation de l'énergie / mesure
- => l'absorbeur ne limite plus τ

Matrice à antenne DCMB

Test matrix (August 2007)

Simulation électromagnétique

A plane wave is launched hitting a single pixel. Open boundaries.

Considered:

- antenna
- shunt
- Si with cavity

Not considered:

- NbSi

- pistes (in progress)
- array effects

Distribution de courants

Lobes d'antenne

150 GHz (2 mm)

300 GHz (1 mm)

Réponse à la polarisation

(1 mm)

Couplage de plusieurs antennes

Diffraction ~ F. λ Antenne ~ λ

Sommation des puissance sur le même bolomètre

Antennes à fente (slot)

Figure 4: Single-element antenna-coupled TES bolometer, currently under development, consists of a dual slot antenna (at left) coupled to superconducting Nb microstrip. The microstrip passes over a suspended beam of silicon nitride to a termination resistor located on the thermally isolated diamond-shaped region. An Al/Ti/Au transition-edge superconductor, located near the termination resistor, is readout via superconducting Nb leads to contact pads located on the right-hand side.

Figure 3: Two possible pixel geometries for antenna-coupled focal planes. (Left) Continuous slot-lines are tapped off and coherently summed in microstrip. The summing produces a useful antenna-pattern without lens coupling. The bandwidth of this arrangement is large, and multiple spectral bands can be obtained by diplexing the final microstrip line. (Right) A dual-polarization antenna sums both linear polarizations onto two striplines at the top and bottom.

Prospectives

Cold Electron Bolometer, L. Kuzmin

Helgren et al., PRL Vol. 87, Number 11 (2001)

G_{e-ph} = 5gV T⁴. Cooling below 60mK is necessary to reduce electron-phonon coupling.

Superconducting and Anderson insulator NbSi sensors can be tailored for optimal photon absorption (R_{sq} ~377 Ω at 1-10K). This is obtained by choosing the appropriate composition and thickness of the NbSi layers.