

Saclay

Microcalorimètres à senseurs Semiconducteur pour la détection du Rayonnement X

Claude Pigot Service d'Astrophysique

Spécificités du rayonnement X

-Une interaction « ponctuelle »

Photon absorbé dans qqs mm de Silicium (qqs 10-100 μm de matériau à haut Z) pour qqs m de distance focale

L'effet photoélectrique -> 2 électrons contenus dans qqs µm de matériau détecteur solide (moins d'1 µm pour un e⁻ de 6 keV)

Pour les futurs spectroimageurs, on envisage une taille de pixels de 250x250 à 500x500 μm^2

- -Une spectrométrie réalisable en énergie ou en longueur d'onde sur le photon
- -Imagerie/concentration possible avec une vraie optique
- -Mesure possible de tous les paramètres d'un photon

Irfu			
CEO Saclay	I-R	Rayons-X	Rayons-Gamma
	Spectrométrie dispersive en longueur d'onde	Spectrométrie en énergie ou en longueur d'onde	Spectrométrie dispersive en énergie
	Mesure d'un flux	Mesure d'un evt (photon)	Mesure d'un evt (photon)
	Niveau constant	Impulsion	Impulsion
	Miroirs	Miroirs	Collimateurs
	μbolomètres G petit	μcalorimètres C _{therm.} réduite	

lrfu

Quelle Spectrométrie ?

Saclay Dispersive en longueur d'onde réseaux, cristaux

En énergie Intrinsèque au détecteur

Nécessité d'associer un détecteur au réseau pour mesurer la dispersion des rayons X incidents

L'équation des réseaux : $m\lambda = d(\cos\beta - \cos\alpha)$ α l'angle d'incidence est imposé β est mesuré par une caméra (CCD ?)

Irfu				CCD					Résea	ux
\sim	Observatory	XMM			Chandra					
	Detector	EPIC MOS	EPIC PN	RGS	ACIS back	ACIS front	HRC	HETG	LETG	
Saclay		Energy Range (keV)	0.2- 12	0.2- 12	0.4- 2.5	0.1-10	0.4-10	0.1-10	0.6-10	0.1-6
Les réseaux :	Effective	@0.25 keV	133	460	-	30	-	150	-	25
	Area (cm ²)	@0.4 keV	360	771	44	120	35	50	-	12
Surface effective		@0.6 keV	591	1061	94	345	70	65	-	25
réduite. 10% en		@1.0 keV	922	1227	185	615	385	215	10	55
movenne à au		@1.5 keV	1180	1304	<u>160</u>	500	525	162	45	105
		@2.5 keV	696	779	-	320	320	65	20	50
meux 20% de		@6.0 keV	768	851	-	205	235	45	25	20
celle des CCDs		@8.0 keV	390	557	-	45	60	10	7	4
		@12.0 keV	19	56	-	-	-	-	-	-
Domaine d'énergie	Energy Resolution (eV)	@0.25 keV	35	35	-	130	37	-	-	0.4
reduit		@0.4 keV	45	45	0.5	120	42	-	-	0.8
		@1.0 keV	55	55	<mark>2.9</mark>	100	56	-	1.0	5.4
Pas d'imagerie		@2.5 keV	85	85	17	120	82	-	<mark>5.2</mark>	34
_		@6.0 keV	130	130	-	170	130	-	29	-
Bonne résolution		@8.0 keV	150	150	-	190	150	-	50	-
spectrale		Angular Resolution (FWHM)	~6"	~6"	-	1"	1"	<0.5"	-	-
Robustesse		Claude	e Pigo	t Ec	ole D	RTBT	à Fréju	s 11-15	5 Mai 20	009

Saclay

Irfu

Les microcalorimètres pour le rayonnement X

Une spectrométrie non limitée par le facteur de Fano Une interaction ponctuelle -> pixel de petit volume Une opération à basse température : La capacité calorifique des matériaux diminue

 $C = \gamma T + a(T/\theta D)^3$

(Supracond. T < Tc) C = $a(T/\theta D)^3 + 8.5 \gamma Tc exp(-1.44Tc/T)$

Existence de thermomètres pour ces basses températures Thermomètres résistifs :

MIS senseur à transition métal-isolant (Si, NTD Ge) TES senseur à transition supraconductrice (bicouche)

$$\Delta E_{FWHM} = 2.35 \xi \sqrt{KT^2 C}$$

Le thermomètre doit avoir :

- La capacité calorifique la plus basse possible
- La sensibilité α la plus haute possible

 $\alpha = d(\ln R)/d(\ln T) = (dR/R)/(dT/T)$

- Une résistance assez basse pour ne pas limiter la bande passante
- Le minimum de bruit, de bruit en 1/f.

Irfu CCC Saclay

Le thermomètre résistif

A basse température la conduction par saut à portée variable (variable range hopping), est bien représentée par la loi d'Efros et Shklovskii avec un terme représentant l'effet de champ :

 $R(T,E) = R_0 \exp(T_0/T)^{1/2} \cdot Exp(-qL E/KT)$ $\alpha = | 1/2(T_0/T)^{1/2} - qL E/KT |$

Contraintes sur le thermomètre

- Capa de ligne + Capa d'entrée (JFET) = qqs 10 picofarads Bande passante électrique -> R = 1 à 10 Mohm
- Eviter l'effet de champ : polarisation de l'ordre du $\ensuremath{\text{mV}}$
- Obtenir la meilleure sensibilité $\alpha = 1/2(T_0/T)^{1/2}$
- 2 paramètres importants : R₀ et T₀

 R_{0} dépend de la résistivité ρ_{0} et de la géométrie du senseur

Le dopage doit être très élevé pour diminuer ρ_0 (objectif R ~ Mohm)

Il faut diminuer le dopage pour maximiser T₀

Nécessité d'un compromis α limité à 10

Technologie dérivée des bolomètres de PACS

Réalisation sur un wafer simple SOI : Fine couche de Silicium (1.5 μm) séparée par une couche d'isolant (oxyde 1 μm) d'un substrat massif (750 μm) Le dopage se fait par implantation ionique 2 technologies ont été successivement utilisées :

La multi-implantation ionique --> abandonnée car trop inhomogène La diffusion à haute température --> la règle actuellement

L'épaisseur est limitée (cas bien différent du germanium (NTD)) par la couche fine du SOI à qqs μ m.

On joue rarement sur la géométrie du senseur :

Senseur carré pour maximiser le volume et réduire le bruit en excès

lrfu

Diffusion de l'implantation

La capacité calorifique du senseur

œ

Saclay

La capacité calorifique du senseur est négligeable devant celle des reprises de contact et éventuellement celle des électrodes :

Deux choix :

Pistes obtenues par un dopage dégénéré (GSFC) Pistes supraconductrices (AI,TiN) avec contacts ohmiques dégénérés

Le dopage dégénéré domine le budget de la capacité calorifique

lrfu

Contraintes sur l'absorbeur

Saclay Les compromis à arbitrer dans la réalisation du senseur limitent la sensibilité à α = 5 et 10

$$\Delta E_{FWHM} = 2.35 \xi \sqrt{KT^2 C}$$

Pour conserver la résolution il faut limiter la capacité calorifique totale du pixel et donc celle de l'absorbeur. Il faudra limiter les électrons libres Pas de métal résistif mais des semiconducteurs à faible gap ou des supraconducteurs

L'homogénéisation thermique à l'intérieur de l'absorbeur et le transfert de la chaleur se font par les phonons et sont plus lents « Effet centre bord » Présence d'excitations élémentaires (e-trou ou qp) qui prennent le temps de se recombiner

Choix de l'absorbeur

Saclay

Irfu

TES : Utilisation d'absorbeur composite Bi - Au, Bi - Cu Le Cu/Au homogénéise thermiquement l'absorbeur déposé sur le senseur et couple la chaleur au senseur par les électrons

MIS : Utilisation d'absorbeur plus lent

L'absorbeur est découplé du senseur par un lien thermique La chaleur est transférée au senseur par les phonons

lrfu

Un absorbeur du rayonnement X

Saclay

La section efficace de l'effet photoélectrique décroît, avec l'énergie, approximativement en ~ E^{-3} et croît, avec le Z, en ~ $Z^{4 a 5}$ Cela impose l'utilisation d'éléments lourds si l'on veut étendre la bande passante en énergie vers les hautes énergies au delà de la raie du fer à 6 keV.

21	22	23	24	25	26	27	28	29	30	31	32	33	34
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96
39	40	41	42	43	44	45	46	47	48	49	50	51	52
Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те
88.906	91.224	92.906	95-94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60
57-71	72	73	74	75	76	77	78	79	80	81	82	83	84
La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро
	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]

Choix de l'absorbeur

MIS : HgTe, Sn traditionnels HgTe Semi-conducteur à faible gap Sn Supraconducteur

Présence, souvent, d'un terme linéaire en T : Cas du HgTe, cas de nombreux supraconducteurs

Problème des supraconducteurs de haute pureté : Piégeage des quasiparticules : Le Tantale

Absorbeurs supraconducteurs composites Alliages (Pb Bi)

Absorbeurs HgTe

Irfu

Courbe : Suzaku/XRS HgTe démontrant la présence d'un terme linéaire en T Cercles ouverts : HgTe recuit sous atmosphère Hg pour minimiser les défauts Cercles fermés : Hg_{1-x}Cd_xTe (x=0.166)

Absorbeurs supraconducteurs

- a) Présence d'un terme linéaire ? : 1 % du volume
- b) Vitesse de thermalisation :

Dans les supraconducteurs : 30 % de l'énergie est piégée sous la forme de quasiparticules.

Comment accélérer la vitesse de leur recombinaison

- Impuretés

Irfu

Saclav

- Absorbeurs composites avec piège à quasiparticules :
 - métal résistif : Au
 - supraconducteur à bas Tc : Al
 - métal ferromagnétique : qqs Å de Ni
- Alliages supraconducteurs de type II :

- PbBi,.....

a) Conductivité thermique :

Amélioration de la RRR, monocristaux

Energie sous forme de quasiparticules après absorption d'un X de 6 keV. Simulations de E. Perinati (Observatoire Giuseppe Vaiana, Palerme) 30% de l'énergie reste piégée dans les quasiparticules

Irfu CCC Saclay

Le lien thermique absorbeur-senseur et la réalisation de matrices de grande taille

- 2 solutions :
 - La colle époxy
 Comment rendre reproductible le lien de colle ?
 - L'hybridation thermomécanique

Comment diminuer sa capacité calorifique ?

La réalisation de grandes matrices nécessite de passer d'une réalisation manuelle à un processus automatique de report d'une matrice complète d'absorbeur sur une matrice senseur.

lrfu

Saclay

Les microcalorimètre de la NASA (GSFC)

SXS team : Peter Serlemitsos, Richard Kelley, Peter Shirron, F. Scott Porter, Caroline Kilbourne and Christine Jhabvala

Une histoire malheureuse :

Un premier test sur fusée-sonde près d'échouer (La double barette de microcalorimètres entre en vibration)

1999 : perte de Astro-E 10 Février 2000 2005 : perte de la cryogénie de Astro-E2 10 Juillet 2005

2013 : Lancement de Astro-H SXS (Soft X-ray Spectrometer)-XCR (X-ray Calorimeter Spectrometer)

Implantations dégénérées

XRS-2 Les électrodes

GSFC silicon microcalorimeter

Irfu

Structure du pixel CEA LETI/SAp

Saclay

Usinage de la matrice d'absorbeur

Sensors Matrix

First Bach 200mm Wafer

First complete hybridization onto 8x8 freed Matrix Claude Pigot Ecole DRTBT à Fréjus 11-15 Mai 2009

Les MOSFET Silicium sont bien adaptés à la lecture de senseurs de haute impédance : 100 G Ω

Pour les senseurs d'impédance intermédiaire (1-10 MΩ) : Les HEMTs GaAs/GaAlAs peuvent être une solution

L'électronique bipolaire SiGe fonctionne à 4 K SiGe bipolar electronics demonstrated at 2- 4 K

On peut remplacer les JFETs Silicium par une électronique cryogénique plus intégrée

Diminuer le nombre de connexions entre le 50 mK et les étages À plus haute température du cryostat

GSFC MIS arrays

Saclay

If absorber attachment automated, read-out, rather than physical design of the array, likely sets the limit on number of pixels

- 60 μ W per JFET dumped to 20 K temperature stage or higher
- JFET's operate with lowest noise at 130 K
- 100 JFET's not hard
- 1000 JFET's possible with monolithic JFET's and connections
 - Careful thermal design required to manage the 60 mW

lrfu

Saclay

Electronique cryogénique

Drain Source

16x1 HEMT Design

Concept de la Motherboard

Saclay

Design optimisé pour réduire et égaliser les impédances de ligne, les capacités parasites et les diaphonies entre pixels Matrices aboutables sur 2 cotés

Il faut augmenter la stabilité en température de la source froide Augmentation de la capacité calorifique Diminution de la réponse aux rayons cosmiques Diminution de la diaphonie Utilisation d'un dépôt de métal résistif sur le Si Cu (GSFC), Pd lrfu

X-ray Astronomy satellites and missions

Saclay

UHURU (SAS-1) 1970-1973 GPC

EINSTEIN (HEAO-2)	1978-1981 (WOLTER type I) First mirror optics						
ROSAT (Roentgen Sat.) 1990-1999							
	ASCA (Astro-D) 1993-2000 (CCD) Standard configuration						
	CHANDRA (AXAF) 1999 angular resolution NEWTON (XMM) 1999 high throughput						
	SUZAKU (Astro-E2) 2005						
	Sinbol-X Astro- H/NeXT (2013)						
	XEUS / IXO (μCal.) (2020) Large focal length						

Evolution en fonction du temps de la résolution en énergie (à 6 keV) pour trois technologies de microcalorimètres

ee

L'après-IXO, un exemple : Gen-X

Saclay

Design	Requirement	Goal	Assumption or Comments
Parameter			
Pixel Pitch	0.1"	0.03"	For 60 m focal length, 0.1" pixels are 30 μm in size.
Field of View	3'x3'	3'x3'	$3'x3' \Rightarrow 1800x1800 \text{ array of } 0.1'' \text{ pixels} $ => $3.24 \times 10^6 \text{ pixels.}$
Energy resolution	2 eV FWHM	1 eV FWHM	This is the requirement for energies up to 6 keV.
Count Rate	1 cps/pixel	10 cps/pixel	
Quantum			Factoring in filter transmitivity, this drops at lower
efficiency	0.60 @ 6 keV	0.80 @ 6 keV	energies.
Energy Range	200 eV – 10 keV	100 eV – 10 keV	
Timing resolution	50 µs	10 µs	
Calibration	0.5 eV – absolute	0.1 eV – absolute	
Background rate	0.004 cts/ksec/arcsec ²		This is the desired residual background after antico vetoing in the 0.5-2 keV energy range.

Conclusion

Saclay

Irfu

La résolution spectrale des futures missions d'astronomie X pourra être atteinte quel que soit le type de senseur utilisé au niveau du monopixel.

Le challenge : La couverture du plan focal

- La mise en œuvre de matrices de grande taille sera conditionnée par la disponibilité d'une électronique de lecture-multiplexage convenable; une électronique cryogénique.
- Quelle électronique permettra l'exploitation d'un grand nombre de pixel dans les limites du budget cryogénique, électrique et en volume ?
- Un point sont les performances d'un monopixel avec une chaîne électronique dédiée
- Les performances d'une matrice intégrée, c'est une autre histoire Chaque pixel est un détecteur différent (≠ cas des CCDs)
- Nécessité d'une calibration + Stabilité en temps après calibration :
 - Vieillissement d'un pixel -> change des paramètres du pixel
 - Stabilité par rapport à l'environnement de la mission :

Environnement magnétique (cryogénérateur ADR), électromagnétique Rayons cosmiques

Irfu CCC Saclay

Annexes

Irfu

Microcalorimètre X silicium : Principe

Absorbeur froid (~ 60 mK)

capacité calorifique réduite au maximum

• Un photon X d'énergie E0 touche l'absorbeur phonons, ionisation, quasiparticules à recombiner

- Conversion en chaleur Q
- Elévation de la température ΔT = Q / C capacité calorifique C faible -> ΔT élevé
- U(T) Transfert de chaleur Q (lien rapide ~100 µs) rapide mais pas trop (permettre la thermalisation)

Thermomètre

- Variation de la résistance *R*(*T*) polarisée par une source de courant
- Mesure de la tension U(T) = R(T).Iéchantillonnage rapide des valeurs de U(T)

Thermostat

- Source froide (~50 mK)
- Evacuation de la chaleur *Q* (lien lent 1-10 ms) fonctionne en mode comptage jusqu'à ~ 10-100 cnt/s
- Restauration de la température initiale