Quoi de neuf autour de la matière noire ?

- galaxy-galaxy lensing (SDSS 2006)
- CMB polarization (QUAD 2009)
- The anthropic axion (Tegmark, Aguirre, Rees, Wilczek 2006)

Rotation Curves \Rightarrow **Dark Matter (?)**

Rotation Curves \Rightarrow Dark Matter OR MOdified Newtonian Dynamics (F $\neq GMm/r^2$)

Sloan Digital Sky Survey

10⁶ redshift galaxy survey Apache Peak, New Mexico, USA

U. of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins U., the Korean Scientist Group, Los Alamos National Lab., the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State U., U. of Pittsburgh, U. of Portsmouth, Princeton U., the United States Naval Observatory, and the U. of Washington.

SDSS : slices of the Universe

HST images of strange SDSS galaxies

Foreground galaxy = gravitational lens \Rightarrow Einstein rings of background galaxies

Weak shear (tangential stretch factor)

shear $\sim heta_E/ heta$ (flat rotation curve) $heta = ext{distance to lens}$ $heta_E \sim (v_{rot}/c)^2$

Galaxy mass profiles from weak shear

Mandelbaum et al (2006) \Rightarrow flat rotation curve to \sim Mpc.

WMAP photo of photon-baryon plasma

Where : "our last scattering surface" R = 14.3GpcWhen : "recombination" t = 380000yrWhat : acoustic vibrations in CDM gravitational potential. (vibrations stop at recombination)

Baryon photon oscillation in CDM well

One oscillation mode vs. time Ø CDM gravitational potential X $\mathbf{y}_{\underline{\mathbf{x}}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ start $\begin{bmatrix} y \\ x \end{bmatrix} (x \leftrightarrow x) (x$ $y_{\underline{x}} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1$ plasma rebounds rarefaction and so on until recombination \rightarrow =velocity \updownarrow =polarization +=hot -=cold

Doppler \Rightarrow **polarization**

Predicted anisotropies

WMAP/ACBAR TT anisotropy spectrum

QUAD EE anisotropy spectrum

Dark matter : the ususal suspects

- Lightest supersymmetric particle CDMS, XENON10, Edelweiss......
- Axion Livermore axion search (+CAST)
- MACHOs (dim stellar objects) eliminated by microlensing searches (EROS)

Axions as dark matter

particle invented to prevent strong CP violation

$$m_a \sim \frac{f_\pi m_\pi}{f_{pq}} \sim 10^{-5} eV \frac{10^{12} GeV}{f_{pq}}$$

 f_{pq} = "Pecci-Quinn symmetry-breaking energy scale"

Dark matter : Bose-Einstein Condensate

$$\Omega_a \sim \Theta_1^2 \frac{10^{-5} eV}{m_a} \sim \Theta_1^2 \frac{f_{pq}}{10^{12} GeV}$$

 $-\pi < \Theta_1 < \pi$ (initial axion-field oscillation amplitude)

Axion conversion in magnetic field

Livermore Axion search

axions absorbed by microwave cavity tuned to axion mass $\nu = m_a c^2/h$ $\sim 2Ghz(m_a/10^{-5}eV)$

 \Rightarrow sensitive to nonanthropic axion

Axion domains with independent Θ_1

Radius of domain = horizon at PQ symmetry breaking $\sim 1pc$ (inflation before PQ) $\Rightarrow \Omega_a \sim \langle \Theta_1^2 \rangle 10^{-5} eV/m_a$ $\sim 10^{20} pc$ (inflation after PQ) $\Rightarrow \Omega_a \sim \Theta_1^2 10^{-5} eV/m_a$

Inflation after *PQ* **: Where are you ?**

observers are here

 $f_{pq} \gg 10^{12} GeV \Rightarrow m_a \ll 10^{-5} eV$ $\Omega_a \sim \Theta_1^2 10^{-5} eV/m_a \Rightarrow \text{Observed } \Theta_1 \ll 1$ (unless life can be formed from a Bose-Einstein condensate) \Rightarrow need new idea to detect anthropic axion