Modes B de polarisation du CMB: intérêt et projets

Pourquoi diable devrait-on encore faire des détecteurs ultra-sensibles pour le CMB alors que Planck a été si magnifiquement lancé hier ?

J.-Ch. Hamilton (APC, Paris)

ce que l'on sait déjà

Modèle standard de la cosmologie : ΛCDM

- L'Univers est en expansion
 - Constante de Hubble
- L'Univers est plat : $\Omega_{tot} \approx I$
- Il contient de la matière noire
 - quantité connue, nature inconnue
- Il contient de l'énergie sombre
 - quantité connue, nature inconnue

Crédits : CMB (T et E), SNIa et catalogues de galaxies

ce que l'on sait déjà

Modèle standard de la cosmologie : ΛCDM

- L'Univers est en expansion
 - Constante de Hubble
- L'Univers est plat : $\Omega_{tot} \approx I$
- Il contient de la matière noire
 - quantité connue, nature inconnue
- Il contient de l'énergie sombre
 - quantité connue, nature inconnue

Crédits : CMB (T et E), SNIa et catalogues de galaxies

ce que l'on sait déjà

Modèle standard de la cosmologie : ΛCDM

- L'Univers est en expansion
 - Constante de Hubble
- L'Univers est plat : $\Omega_{tot} \approx I$
- Il contient de la matière noire
 - quantité connue, nature inconnue
- Il contient de l'énergie sombre
 - quantité connue, nature inconnue

Crédits : CMB (T et E), SNIa et catalogues de galaxies

- Résolution angulaire : 5 arcminutes (1/6 de la lune)
- Sensibilité : 5 mK / pixel de résolution (0.0002 % sur 2.73 K)
- Gain d'un facteur 3-10 sur les paramètres cosmologiques

(Planck Bluebook)

Le CMB est polarisé (10%) !

W. Hu

N. Ponthieu

Précieuses informations complémentaires !!! $C_{\ell}^{TT}, C_{\ell}^{TE}, C_{\ell}^{EE}, C_{\ell}^{BB}$

Le CMB est polarisé (10%) !

No Polarization

W. Hu

Précieuses informations complémentaires !!! $C_{\ell}^{TT}, C_{\ell}^{TE}, C_{\ell}^{EE}, C_{\ell}^{BB}$

N. Ponthieu

Le CMB est polarisé (10%) !

W. Hu

Précieuses informations complémentaires !!! $C_{\ell}^{TT}, C_{\ell}^{TE}, C_{\ell}^{EE}, C_{\ell}^{BB}$

Caractérisation de la polarisation

Paramètres de Stokes : $I(\vec{n}) = \left\langle \left| E_{\parallel}(\vec{n}) \right|^{2} \right\rangle + \left\langle \left| E_{\perp}(\vec{n}) \right|^{2} \right\rangle \qquad \text{(scalaire)}$ $Q(\vec{n}) = \left\langle \left| E_{\parallel}(\vec{n}) \right|^{2} \right\rangle - \left\langle \left| E_{\perp}(\vec{n}) \right|^{2} \right\rangle \qquad \text{(spin 2)}$ $U(\vec{n}) = \left\langle E_{\parallel}(\vec{n}) E_{\perp}^{\star}(\vec{n}) \right\rangle + \left\langle E_{\perp}(\vec{n}) E_{\parallel}^{\star}(\vec{n}) \right\rangle \qquad \text{(spin 2)}$ $V(\vec{n}) = i \left(\left\langle E_{\parallel}(\vec{n}) E_{\perp}^{\star}(\vec{n}) \right\rangle - \left\langle E_{\perp}(\vec{n}) E_{\parallel}^{\star}(\vec{n}) \right\rangle \right) \qquad \text{(spin 2)}$

• Décomposition en harmoniques sphériques de spin +/- 2 $Q(\vec{n}) + iU(\vec{n}) = \sum_{\ell m} a_{2,\ell m} \, _2Y_{\ell m}(\vec{n})$ $Q(\vec{n}) - iU(\vec{n}) = \sum_{\ell m} a_{-2,\ell m} \, _{-2}Y_{\ell m}(\vec{n})$

Tout champ de polarisation peut être décomposé en 2 champs scalaires E et B

$$a_{E,\ell m} = -\frac{a_{2,\ell m} + a_{-2,\ell m}}{2}$$
 (pair)
 $a_{B,\ell m} = i\frac{a_{2,\ell m} - a_{-2,\ell m}}{2}$ (impair)

- Résolution angulaire : 5 arcminutes (1/6 de la lune)
- Sensibilité : 5 mK / pixel de résolution (0.0002 % sur 2.73 K)
- Gain d'un facteur 3-10 sur les paramètre cosmologiques

(Planck Bluebook)

(Planck Bluebook)

Qu'y a-t-il au delà ?

Cela vaut-il le coup d'aller plus loin ?

85

(Planck Bluebook)

Qu'y a-t-il au delà ?

Cela vaut-il le coup d'aller plus loin ?

D'où viennent les formes de spectre de CI que l'on ajuste sur les données ?

J.-Ch. Hamilton - École DRTBT, Fréjus - mai 2009

85

(Planck Bluebook)

Qu'y a-t-il au delà ?

Cela vaut-il le coup d'aller plus loin ?

D'où viennent les formes de spectre de Cl que l'on ajuste sur les données ?

Inflation !

J.-Ch. Hamilton - École DRTBT, Fréjus - mai 2009

85

L'inflation

Expansion accélérée aux premiers instants de l'Univers.

Résout des paradoxes connus du modèle du Big-Bang

- Horizon
- Platitude

Prédit la forme des fluctuations de densité primordiales

- Graines pour la formation des structures
- Gaussianité
- présence de modes scalaires et tenseurs

- L'Univers est très homogène aux grandes échelles
- Cela signe un processus de «thermalisation» dans l'Univers jeune
- Or l'horizon au moment du découplage était ~ I degré
 - Comment des zones déconnectées causalement se sont-elles thermalisées ?
 - Solution : Inflation

- L'Univers est très homogène aux grandes échelles
- Cela signe un processus de «thermalisation» dans l'Univers jeune
- Or l'horizon au moment du découplage était ~ I degré
 - Comment des zones déconnectées causalement se sont-elles thermalisées ?
 - Solution : Inflation

- L'Univers est très homogène aux grandes échelles
- Cela signe un processus de «thermalisation» dans l'Univers jeune
- Or l'horizon au moment du découplage était ~ I degré
 - Comment des zones déconnectées causalement se sont-elles thermalisées ?
 - Solution : Inflation

Taille d'une zone homogène

- L'Univers est très homogène aux grandes échelles
- Cela signe un processus de «thermalisation» dans l'Univers jeune
- Or l'horizon au moment du découplage était ~ I degré
 - Comment des zones déconnectées causalement se sont-elles thermalisées ?
 - Solution : Inflation

Thermalisation

Problème de la platitude

- Ω_{tot} =I est «instable»
 - le moindre écart à la platitude à t=0 se traduirait aujourd'hui par une écart considérable
 - or on mesure $\Omega_{tot}=1$ avec 1% de précision !
 - \Rightarrow à t=10⁻⁴³ sec : $|\Omega_{tot}-1| < 10^{-60}$
- II faut un processus pour «aplatir» l'Univers

Solution : Inflation

A. Guth

Problème de la platitude

- Ω_{tot} =I est «instable»
 - le moindre écart à la platitude à t=0 se traduirait aujourd'hui par une écart considérable
 - or on mesure $\Omega_{tot}=1$ avec 1% de précision !
 - \Rightarrow à t=10⁻⁴³ sec : $|\Omega_{tot}-1| < 10^{-60}$
- II faut un processus pour «aplatir» l'Univers

Solution : Inflation

A. Guth

D'où viennent les structures ?

- On observe de nombreuses structures denses autour de nous (galaxies, amas, filaments)
- Ie Big-Bang «simple» n'explique pas leur origine
- on explique bien les structures
- Deux alternatives :
 - conditions initiales ad-hoc
 - processus permettant de les générer :
 L'inflation

D'où viennent les structures ?

- On observe de nombreuses structures denses autour de nous (galaxies, amas, filaments)
- Ie Big-Bang «simple» n'explique pas leur origine
- si on «suppose» les graines alors on explique bien les structures
- Deux alternatives :
 - conditions initiales ad-hoc
 - processus permettant de les générer :
 L'inflation

La Phase d'inflation

- Un champ scalaire, l'inflaton, domine
 l'Univers primordial
 - Potentiel de slow-roll ⇒ expansion accélérée ⇔ inflation
- L'inflation s'arrête quand le champ approche de son minimum
 - \Rightarrow Reheating : production de particules
- L'univers suit alors une évolution classique

Slow-Roll : faible pente et faible courbure

La Phase d'inflation

- Un champ scalaire, l'inflaton, domine l'Univers primordial
 - Potentiel de slow-roll ⇒ expansion accélérée ⇔ inflation
- L'inflation s'arrête quand le champ approche de son minimum
 - \Rightarrow Reheating : production de particules
- L'univers suit alors une évolution classique

Slow-Roll : faible pente et faible courbure

Expansion accélérée

L'inflaton se désintègre en particules

La Phase d'inflation

- Un champ scalaire, l'inflaton, domine
 l'Univers primordial
 - Potentiel de slow-roll ⇒ expansion accélérée ⇔ inflation
- L'inflation s'arrête quand le champ approche de son minimum
 - \Rightarrow Reheating : production de particules
- L'univers suit alors une évolution classique

Slow-Roll : faible pente et faible courbure

les fluctuations quantiques du potentiel de l'inflaton sont «grossies» par l'inflation et donnent des fluctuations macroscopiques dont on peut prédire la forme

- \Rightarrow graines pour la formation des structures
- modes scalaires et tenseurs
- spectre presque invariant d'échelle
- fluctuations presque gaussiennes

Beaucoup de questions

D'où vient cette fonction ?

Le CMB (température et polarisation) contient des réponses à ces questions fondamentales mais actuellement, presque tous les modèles d'inflation sont compatibles avec les données

Inflation Vs. Données

Inflation Vs. Données

Inflation Vs. Données

Prédiction de l'inflation : MODES Scalaires & tenseurs Polarisation E & B

- Perturbations scalaires
 - Fluctuations de densité
 - Température
 - Polarisation E
 - Pas de Polarisation B

Perturbations tensorielles

- Ondes gravitationnelles primordiales
 - Température
 - Polarisation E
 - Polarisation B

 $\sigma_{tens}^{T} \leq 30 \mu \mathrm{K}$ $\sigma_{tens}^{E} \leq 1 \mu \mathrm{K}$ $\sigma_{tens}^{B} \leq 0.3 \mu \mathrm{K}$

 $\sigma_{scal}^T \simeq 100 \mu \mathrm{K}$

 $\sigma^E_{scal} \simeq 4 \mu \mathrm{K}$

Seuls les modes Tenseurs produisent de la polarisation B

• les modes tenseurs sont une prédiction spécifique de l'inflation

$$P_s(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1} \qquad P_r(k) = A_t \left(\frac{k}{k_0}\right)^{n_t} \qquad r = \frac{P_t(k_0)}{P_s(k_0)}$$

rapport entre modes B et E

$$V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1/4}$$

• les modes tenseurs sont une prédiction spécifique de l'inflation

$$P_{s}(k) = A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \qquad P_{r}(k) = A_{t} \left(\frac{k}{k_{0}}\right)^{n_{t}} \qquad r = \frac{P_{t}(k_{0})}{P_{s}(k_{0})}$$

amplitude

$$V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1/4}$$

• les modes tenseurs sont une prédiction spécifique de l'inflation

$$P_s(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1} \qquad P_r(k) = A_t \left(\frac{k}{k_0}\right)^{n_t} \qquad r = \frac{P_t(k_0)^{n_t}}{P_s(k_0)^{n_t}} \qquad r = \frac{P_t($$

modes

 $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1/4}$

• les modes tenseurs sont une prédiction spécifique de l'inflation

$$P_{s}(k) = A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \qquad P_{r}(k) = A_{t} \left(\frac{k}{k_{0}}\right)^{n_{t}} \qquad r = \frac{P_{t}(k_{0})}{P_{s}(k_{0})} \qquad r_{s}(k_{0}) \qquad$$

⇒ détecter les modes B de polarisation du CMB c'est :

- mettre en évidence les modes tenseurs
- Prouver qu'il y a eu inflation
- Mesurer son échelle en énergie

 $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1}$

c/o Gary Hinshaw

Seuls les modes B permettent de «voir» les modes tenseurs directement

Seuls les modes B permettent de «voir» les modes tenseurs directement

Seule autre approche

Détecteurs directs d'ondes Gravitationnelles :

Virgo/Ligo

LISA (~2018)

La détection sera difficile : plus adaptés aux événements violents

Perspectives de détection directe

Perspectives de détection directe

Perspectives de détection directe

Mesurer l'inflation avec le CMB ?

Quatre quantités à mesurer :

- A_s : connu
- *n*_s : connu
- A_t ou r : inconnu, recquiert une **détection** du spectre B
- *n_t* : inconnu, recquiert une **mesure** du spectre B
- Prédiction générique de l'inflation $r = -8n_t$

Test de cohérence de l'inflation

- Mesure directe du potentiel par développement de Taylor: $V(\phi) \simeq V|_{\phi_{\text{CMB}}} + V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}}) + \frac{1}{2} V''|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^2 + \frac{1}{3!} V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^3$
 - A_s relié à V'
 - *n*_s relié à V"
 - running de n_s relié à V""
 - A_t relié à V

Reconstruction de la forme du potentiel de l'inflaton !

Difficultés attendues dans la quête...

Sensibilité :

- La polarisation B est au mieux 10x plus faible que E
- L'amplitude pourraît être **très** basse ...
- I année de Planck, c'est S/N=I pour T/S=0.01
- Une mission spatiale n'est pas pour demain ...

• <u>Avant-plans :</u>

- Nécessité de les soustraire avec précision
 - Détecteur multi-longueur d'onde
- Observer un région ultra-propre
 - Ne peut pas être trop petite car les modes B primordiaux sont aux grandes échelles

Effets systématiques :

- L'instrument induit de la fuite de T dans E et B
 - Les angles des polariseurs, la propreté des lobes sont critiques
 - La cross-polarisation est aussi un problème majeur
- Polarization atmosphérique ...

Instruments possibles

<u>lmageurs :</u>

- Bonne sensibilité avec des matrices de bolomètres
- Systématiques induites par le télescope (lobes, angles des polariseurs, nécessité de faire des différences entre détecteurs pour la polarisation)
- Très sensibles à l'atmosphère

Instruments possibles

<u>lmageurs :</u>

- Bonne sensibilité avec des matrices de bolomètres
- Systématiques induites par le télescope (lobes, angles des polariseurs, nécessité de faire des différences entre détecteurs pour la polarisation)
- Très sensibles à l'atmosphère

Interféromètres hétérodynes :

- Excellents pour les systématiques (pas d'optique)
- Sensibilité limitée par les HEMT
 - Difficile de faire des corrélateurs avec plus de ~15 voies (DASI, CBI)

Première détection de la polarisation du CMB !

Projets expérimentaux de recherche des modes B

Planck ! (2009)

- Détection possible de r=0.03 à 95% C.L. (28 mois)
- Ciel complet \Rightarrow pic de réionisation (ℓ =7)

Au sol et en ballon (2009-2012)

- (USA Europe)
- Imageurs : BICEP, EBEX, SPIDER, QUIET, CLOVER
- Interféromètres hétérodynes: Ø

Futurs projets satellites (~ longtemps) CMBPol BPOL

NB: il n'y a QUE des imageurs ...

Projets expérimentaux de recherche des modes B

Planck ! (2009)

- Détection possible de r=0.03 à 95% C.L. (28 mois)
- Ciel complet \Rightarrow pic de réionisation (ℓ =7)

Au sol et en ballon (2009-2012)

- (USA Europe)
- Imageurs : BICEP, EBEX, SPIDER, QUIET, CDEVER
- Interféromètres hétérodynes: Ø

Futurs projets satellites (~ longtemps) CMBPol BPOL

NB: il n'y a QUE des imageurs ...

BICEP

Caltech / Cardiff / JPL / Stanford UCB / UCSD

Goal: *l*~ 80 B-mode limit

- ≻small (30 cm) aperture
- ➤ cold (4K) telescope
- ➢ 96 JPL detectors
- ≻ 100 GHz + 150 GHz
- ≻sited at South Pole
- ≻deployed late 2005

(From A. Lange)

(From A. Lange)

BICEP field selection

100 GHz FDS Dust Model

> 3000 hours on CMB target in first season!

(From A. Lange)

Pretty pictures.....

(From A. Lange)

BICEP, BICEP2, KECK

(From A. Lange)

Antenna coupled TES array (4x64)

SQUID Mux Readout

BICEP2 focal plane, May 2009

(From A. Lange)

Getting more pixels on the sky ...

(From A. Lange)

EBEx

EBEx Summary

- 14 day flight, 1476 TESs
- 420 deg²
- ~24,000 8' pixels on the sky
- Low dust contrast (4µ K rms)
- 796, 398, 282 TES detectors at 150, 250, 410 GHz
- 0.7 μ K/8' pixel Q/U;
- 0.5 µ K/8' pixel T
- Currently integrating
 - detectors into cryostat in UMN
 - Pointing sensors onto gondola in Cu
- North American flight: Automa 2008 Mai 2009
- Long Duration (Antarctic) flight: Austral Summer 2009

Will Grainger

PNC; B-Modes; Ganga

(From K. Ganga)

EBEx

2008-04-01

EBEx Expected Results

10 PLANC Detect (or set upper bound) Synchotron in inflationary B-mode Dust - T/S < 0.02 at 2σ (excluding systematic and foreground EBE subtraction uncertainty) [µK] Detect lensing B-mode - 5% error on amplitude of $[1(1+1)C_1/2\pi]^{1/2}$ lensing power spectrum Measure E-E power spectrum 0.1 Determine properties of polarized dust **Gravity Wave B** lensing Will Grainger 0.01 150 EBEX, 14 days 10 100 1000

PNC; B-Modes; Ganga

(From K. Ganga)

25

l'interférométrie en bref

- Ligne de base : $||\vec{u}|| = \frac{D}{\lambda}$ $\ell = 2\pi ||\vec{u}||$
- Lobe : $B(ec{x})$
- Signal en sortie : $S(\vec{u}) = \int E_1(\vec{n}) E_2^{\star}(\vec{n}) B^2(\vec{n}) d\vec{n}$
- Déphasage : $\delta = 2\pi \vec{u} \cdot \vec{x}$
- Visibilités :

 $S(\vec{u}) = \int |E(\vec{n})|^2 B^2(\vec{n}) \exp(2i\pi \vec{u} \cdot \vec{x}) d\vec{n}$

Un interféromètre mesure la <u>transformée de Fourier</u> du champ observé

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

<u>Interférométrie :</u>

- Détection des franges d'interférence d'une onde EM
- Directement sensible aux corrélations spatiales du signal (TF)
- Pas besoin de cartes
- Pas de différences entre détecteurs

<u>Bolomètres :</u>

- Détection de la puissance du rayonnement incident
- Haute sensibilité, amplificateurs bas bruit : BLIP
- Possibilité de faire de grandes matrices
- <u>Interférométrie bolométrique additive :</u>
- Pas de corrélateur : $\langle (E_1 + E_2)^2 \rangle = \langle E_1^2 \rangle + \langle E_2^2 \rangle + 2 \langle E_1 E_2^{\star} \rangle$
- Mesure des 4 paramètres de Stokes
- Insensible aux fluctuations temporelles de l'atmosphère (et à toutes les variations temporelles systématiques)

Le concept de BRAIN

Quasi-optical Beam Combiner

Le concept de BRAIN

Quasi-optical Beam Combiner

70 cm

Le concept de BRAIN

Quasi-optical Beam Combiner

70 cm

Quasi Optical Combiner

 Les images de tous les cornets sont superposées sur la matrice de bolomètres

• On forme des franges d'interférence

 Chaque pixel mesure une combinaison linéaire des visibilités avec un déphasage différent

En variant les déphaseurs on multiplie les configurations (multiplexage temporel) :
 toutes les visibilités sont reconstruites de manière optimale [Charlassier et al., arxiv:0806.0380, A&A 497-3 (2009) 963-971]

64 cornets: Image sur la matrice de bolomètres

Résolution infinie

144 bolomètres

Plus il y a de cornets, plus les détails sont fins (lignes de base plus grandes)

Sensibilités comparées

Par rapport à un imageur:

- La sensibilité intrinsèque est réduite (~60%)
- Si l'on tient compte de la «variance d'échantillon» la différence est réduite
- Cette différences est le «prix à payer» pour la réduction des systématiques
- En fait, la NET devrait être réduite (~25%) pour Bl (plus de bolomètres par cornet)
- Par rapport à un interféromètre hétérodyne:
 - Sensibilité intrinsèque améliorée d'un facteur 2
 - La NET sera toujours meilleure avec des bolomètres qu'avec une détection cohérente (bruit ajouté par l'amplification)

[[]Hamilton et al., arxiv:0807.0438, A&A 491-3 (2008) 923-927] (updated with Bandwidth and accurate NET calculations)

Nous avons réussi (sur le papier) à combiner les avantages

Sensibilités comparées

Par rapport à un imageur:

- La sensibilité intrinsèque est réduite (~60%)
- Si l'on tient compte de la «variance d'échantillon» la différence est réduite
- Cette différences est le «prix à payer» pour la réduction des systématiques
- En fait, la NET devrait être réduite (~25%) pour BI (plus de bolomètres par cornet)
- Par rapport à un interféromètre hétérodyne:
 - Sensibilité intrinsèque améliorée d'un facteur 2
 - La NET sera toujours meilleure avec des bolomètres qu'avec une détection cohérente (bruit ajouté par l'amplification)

[[]Hamilton et al., arxiv:0807.0438, A&A 491-3 (2008) 923-927] (updated with Bandwidth and accurate NET calculations)

Nous avons réussi (sur le papier) à combiner les avantages

Calculs de bruit

Hypothèse : NEP_{bolo} = 1.5x10⁻¹⁷ W/sqrt(Hz) @ 300 mK et 1.5x10⁻¹⁸ W/sqrt(Hz) @ 100 mK [M. Piat]

28	Cold optics Temperature	к	4	Cold optics Temperature	к	4
29	Focal plane temperature	mK	300	Focal Plane Temerature	mK	300
30						
31						
32	CMB Power on one horn	W	2,1E-13	CMB Power on one horn	W	2,1E-13
33	CMB Power on all horns	W	3,0E-11	CMB Power on all horns	W	3,0E-11
34						
35	Atmosphere T	к	240	Atmosphere T	к	240
36	Atmosphere Emissivity		0,05	Atmosphere Emissivity		0,05
37	Atmosphere P on one horn	w	2,2E-12	Atmosphere P on one horn	W	2,2E-12
38	Atmosphere P on all horns	W	3,2E-10	Atmosphere P an all horns	W	3,2E-10
39						
40	Window T	к	240	Window T	к	240
41	Window emissivity		0,02	Window emissivity		0,02
42	P window in one horn	W	8,9E-13	P window in one horn	W	8,9E-13
43	P window total	W	1,3E-10	P window total	w	1,3E-10
44						
45	Filters T	ĸ	77	Filters T	к	77
46	Filters Emissivity		0,01	Filters Emissivity		0,01
47	P filters in one horn	W	1,4E-13	P filters in one horn	W	1,4E-13
48	P filters total	W	2,0E-11	P filters total	W	2,0E-11
49				and the second se		
50	Horns T	к	4	Horns T	к	4
51	Horns Emissivity		0,2	Horns Emissivity		0,2
52	P from one sec horn	W	8,3E-14	P from one horn	W	8,3E-14
53	P from all sec. horns	W	2,4E-11	P from all horns	w	1,2E-11
54						
55	Mirrors T	к	4	Mirrors T	к	240
56	Mirrors Emissivity		0,01	Mirrors Emissivity		0,01
57	P on each bol	W	4,1E-15	P on each bol	w	4,4E-13
58	P on the whole array	W	3,3E-12	P on the whole array	w	6,4E-11
59						
60	P total on the array	W	5,2E-10	P total on the array	w	5,7E-10
61	P per bolometer	W	6,7E-13	P per bolometer	w	2,0E-12
62	Photons shot noise	W/Sqrt(Hz)	8,9E-18	Photons shot noise	W/Sqrt(Hz)	1,5E-17
63	Photons Bunching noise	W/Sqrt(Hz)	6,3E-18	Photons Bunching noise	W/Sqrt(Hz)	1,9E-17
64	NEP Photons	W/Sqrt(Hz)	1,1E-17	NEP Photons	W/Sqrt(Hz)	2,4E-17
65	NEP Bolo	W/Sqrt(Hz)	1,5E-17	NEP Bolo	W/Sqrt(Hz)	1,5E-17
66	NEP Tot	W/Sqrt(Hz)	1,9E-17	NEP Tot	W/Sqrt(Hz)	2,9E-17
67						
68	NET for one single bolo	muK.sqrt(s)	87	NET for one single bolo	muK.sqrt(s)	133
69	NET * SQRT(NBol)/Sqrt(N	muK.sqrt(s)	202	NET * SORT(NBol)/Sort(N	muK.sqrt(s)	188
70	Ratio to imager		1.07		and the second s	
71	Ratio 2 to imager		1.15			
1 1			1.1.3			

Calculs de bruit

Hypothèse : NEP_{bolo} = 1.5x10⁻¹⁷ W/sqrt(Hz) @ 300 mK et 1.5x10⁻¹⁸ W/sqrt(Hz) @ 100 mK [M. Piat]

28	Cold optics Temperature	к	4	Cold optics Temperature	к	4
29	Focal plane temperature	mK	100	Focal Plane Temerature	mK	100
30				a service that a service service		
31	and a state of the second					
32	CMB Power on one horn	W	2,1E-13	CMB Power on one horn	W	2,1E-13
33	CMB Power on all horns	W	3,0E-11	CMB Power on all horns	W	3,0E-11
34						
35	Atmosphere T	к	240	Atmosphere T	к	240
36	Atmosphere Emissivity		0,05	Atmosphere Emissivity		0,05
37	Atmosphere P on one horn	w	2,2E-12	Atmosphere P on one horn	w	2,2E-12
38	Atmosphere P on all horns	W	3,2E-10	Atmosphere P an all horns	W	3,2E-10
39						
40	Window T	к	240	Window T	к	240
41	Window emissivity		0,02	Window emissivity		0,02
42	P window in one horn	w	8,9E-13	P window in one horn	w	8,9E-13
43	P window total	w	1,3E-10	P window total	w	1,3E-10
44			0.000			
45	Filters T	к	77	Filters T	к	77
46	Filters Emissivity		0,01	Filters Emissivity		0,01
47	P filters in one horn	w	1,4E-13	P filters in one horn	w	1,4E-13
48	P filters total	w	2,0E-11	P filters total	W	2,0E-11
49				and the second		
50	Horns T	ĸ	4	Horns T	к	4
51	Horns Emissivity		0,2	Horns Emissivity		0,2
52	P from one sec horn	w	8,3E-14	P from one horn	W	8,3E-14
53	P from all sec. horns	W	2,4E-11	P from all horns	w	1,2E-11
54						
55	Mirrors T	к	4	Mirrors T	к	240
56	Mirrors Emissivity		0,01	Mirrors Emissivity		0,01
57	P on each bol	W	4,1E-15	P on each bol	W	4,4E-13
58	P on the whole array	w	3,3E-12	P on the whole array	W	6,4E-11
59						
60	P total on the array	W	5,2E-10	P total on the array	W	5,7E-10
61	P per bolometer	w	6,7E-13	P per bolometer	W	2,0E-12
62	Photons shot noise	W/Sqrt(Hz)	8,9E-18	Photons shot noise	W/Sqrt(Hz)	1,5E-17
63	Photons Bunching noise	W/Sqrt(Hz)	6,3E-18	Photons Bunching noise	W/Sqrt(Hz)	1,9E-17
64	NEP Photons	W/Sqrt(Hz)	1,1E-17	NEP Photons	W/Sqrt(Hz)	2,4E-17
65	NEP Bolo	W/Sqrt(Hz)	1,5E-18	NEP Bolo	W/Sqrt(Hz)	1,5E-18
66	NEP Tot	W/Sqrt(Hz)	1,1E-17	NEP Tot	W/Sqrt(Hz)	2,4E-17
67				and the second second second second		
68	NET for one single bolo	muK.sqrt(s)	52	NET for one single bolo	muK.sqrt(s)	114
69	NET * SORT(NBol)/Sort(N	muK.sart(s)	120	NET * SORT(NBol) /Sart(N	muK.sart(s)	161
70	Patio to images		0.75	and a function of a function		
70	PatioA2 to Imager		0,75			
11	natio 2 to inager		0,50			
Nombre de cornets

J.-Ch. Hamilton - École DRTBT, Fréjus - mai 2009

Taille du champ de vue des cornets

J.-Ch. Hamilton - École DRTBT, Fréjus - mai 2009

Champ de vue, nombre de cornets et bandwidth

Champ de vue, nombre de cornets et bandwidth

Nombre de bolomètres

Nombre de bolomètres

~ 30x30 bolomètres par module

J.-Ch. Hamilton - École DRTBT, Fréjus - mai 2009

Design «final»

Fraction of power : 95.39 %

le DRTBT, Fréjus - mai 2009

Conclusions

- La quête des modes B a commencé
- Leur détection serait la preuve directe de la phase d'inflation qui a produit les fluctuations primordiales
- La mesure de leur spectre permettrait de comprendre la physique de l'inflaton en détails
- Ceci ne sera possible qu'avec une nouvelle génération de détecteurs
 - Larges matrices de bolomètres
 - Lecture multiplexée
 - Nouveaux concepts instrumentaux (Interférométrie bolométrique ?)

