Limites et perspectives des détecteurs cryogéniques

G. Chardin, CSNSM Université Paris-Sud and CNRS/IN2P3

Plan

- Motivations initiales
- Deux « drivers » en physique
 - Recherche de la Matière Noire
 - Masse neutrino : désintégration double beta
- Types de senseurs et de détecteurs : évolutions
- Du détecteur simple pixel aux matrices
- Développements en cryogénie et en cryoélectronique
- Quelques mots sur la roadmap européenne ASPERA
- Conclusions partielles

« Drivers » de physique

- infrarouge, millimétrique : Herschel, Artémis, camera bolomètres IRAM millimétrique 30 m, matrices Nb_xSi_{1-x} haute impédance 200+ pixels, ...
- CMB : Planck, polarisation BRAIN, Olimpo ...
- astronomie X : énergie quelques centaines eV à un petit nombre de dizaines de keV, avec objectif fondamental de la raie du Fer à 6 keV : IXO
- recherche de WIMPs : EDELWEISS, CRESST, ROSEBUD, EURECA
- Masse du neutrino : MIBETA, CUORICINO, CUORE

Naissance d'une communauté

- « driver » de deux problèmes de physique (logique de projet):
 - masse du neutrino double beta (MIBETA, puis CUORICINO, puis CUORE) (Claudia Nones)
 - recherche des WIMPs, identification d'un très faible signal de reculs nucléaires (signal), au milieu des reculs électroniques (très grande majorité des interactions, bruit de fond radioactif) (Alex Juillard)

Quelle est la composition de l'Univers ?

- Astrophysical measurements
 - "Dark" matter halo around the galaxies
 - Local density:
 r_{DM} ~ 0.3 0.5 GeV/cm3

after Drukier and Stodolsky, PRD 30 (1984) 2295 Direct detection techniques

Wimps direct detection experiments

CDMS @ Soudan

250 g Ge or 100 g Si crystal 1 cm thick x 7.5 cm diameter

Collect athermal phonons: XY position imaging Surface (Z) event veto based on pulse shape risetime

CDMS II Background Discrimination

- Ionization Yield
 (ionization energy per unit recoil energy)
 depends strongly on
 type of recoil
- Most background sources (photons, electrons, alphas) produce electron recoils

CDMS II Background Discrimination

 Ionization Yield (ionization energy per unit recoil energy) depends strongly on type of recoil

 Ionization yield alone rejects >99.9% of gammas, >75% of 'betas'

Ionization + Timing: Reject <u>99.9998%</u> of **Gammas**, <u>99.8%</u> of **surface** events

From CDMS-II in Soudan to SuperCDMS in SNOLab

Edelweiss: event-by-event discrimination

O. Martineau et al., astro-ph/0310657/

DRTBT, Fréjus, Mai 2009

EDELWEISS-II setup in LSM

-Bolometric detectors with NbSi with identification and rejection of surface events -Interdigit detectors with identification and rejection of surface events - Large number of channels/wires - Operation in underground site: remote operation of dilution cryostat and helium reliquefier

« SuperID » 400g. CSNSM_04

Super ID geometry

Diameter = 70mm Height = 20mm

Simulation of InterDigit Detector

InterDigit: rejet des événements surface

March 11th, 2009

Moriond EW La Thuile - DM searches

Identification et rejet gammas

Rejection 20-500 Q<0.5:

- ID401 +ID3 : 0 / 89 000
- Rejection < ~2.6 x10⁻⁵
- Equivalent to background exposure ~ 2 000 kg.d

CRESST-II experiment (Gran Sasso)

Background discrimination by simultaneous detection of phonons and light Works with many absorber

separate calorimeter as light materials detector CaWO₄, PbWO₄, BaF, BGO (other tungstates and molybdates) W-SPT 140 Pulse Height in Light Detector [keV] scintillator γ**+e+n** 120 light reflector W-SPT 100 High rejection: 80 60 99.7% E > 15 keV 40 99.9% E > 20 keV 20 nuclear recoils 0 20 60 100 120 140 40 80 0 Appl. Phys.Lett. Pulse Height in Phonon Detector [keV]

DRTBT, Fréjus, Mai 2009

75(9),1335(1999)

CRESST II - Detector Module

phonon channel $300g CaWO_4$ $\emptyset = 40mm, h = 40mm$ $W-SPT 4 \times 6 mm^2$

light channel Si 30 × 30 × 0.4 mm³ W-SPT

reflector polymeric foil, teflon

DRTBT, Fréjus, Mai 2009

Experimental status and theoretical predictions

Détecteurs cryogéniques vs. détecteurs conventionnels

- Dark Matter: approximativement la même sensibilité
 - CDMS légèrement meilleure que XENON, Interdigit revient fort)
 - Etape XENON-100 : comprendre les limitations des détecteurs gaz/liquides nobles
 - Importance de disposer de deux cibles au moins (Xe, Ge ?)
- Double beta : GERDA/MAJORANA, SuperNEMO, CUORE
 - Avantage en principe à GERDA, mais à vérifier
 - Là aussi importance de disposer de plusieurs cibles
- CMB, IR/mm, X-ray : nouvelle génération semble presque nécessairement cryogénique

Pioneering microcalorimeters

- S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56 (1984) 1257 : quelques dizaines de microgrammes
- N. Coron, et al., Nature 314 (1985) 75 : 0.5 mg diamond composite bolometer
- Première matrice : XQC fin années 90

Motivations initiales

- La capacité calorifique varie comme T³ (matériau diélectrique), ou comme T (métal)
- Sensibilité à une énergie E₀ donnée meilleure à basse température T
- Phonons meV ou moins : résolution intrinsèque en principe excellente $\delta E_0 = 2.35 \sqrt{\epsilon F E_0}$
- Egalement, possibilité de combiner la mesure du signal de phonons avec une deuxième mesure de scintillation ou de charge dans certains matériaux

Principe de détection

- 1- Dépôt d'énergie dans l'absorbeur du détecteur
- 2- Couplage entre absorbeur et senseur (NTD, TES, MMC, ...)
- 3- Fuite thermique vers le bain afin de revenir à T de base

Senseurs: MIT

- Metal-Insulator Transition (MIT) (Transition métal-isolant)
 - Si implanté (implantation ionique, chimique puis diffusion à haut T)
 - Neutron Transmuted Doped (NTD) Ge (dopages par irradiation neutrons)
 - Senseurs en couches minces amorphes (e.g. $Nb_xSi_{(1-x)}$, or $Y_xSi_{(1-x)}$)
- Excellents thermistors, impédance généralement élevée, MΩ à GΩ
- Initialement difficile de contrôler précisément l'impédance (production de plusieurs batches) (e.g. chimique et NTD)
- Homogénéité critique
- Diffusion à haute température (McCammon, Agnèse): bien meilleure homogénéité (limitation: quelques μm épaisseur)

Senseurs: MIT (Metal-Insulator Transition)

- Impédance ajustable $M\Omega$ à $G\Omega$
- Production le plus souvent de plusieurs batches
- Mécanisme de variable range hopping (Mott, Efros, Shklovskii)

Ion implanted Si impedance scaling (McCammon et al.)

Various batches of NTDs (Beeman and Haller)

Senseurs Nb_xSi_(1-x)

- Co-évaporation réalisée au CSNSM (Orsay)
- Nb < 9%: senseur MIT
 - Isolant d'Anderson
 - Excellent couplage thermique electron-phonon
 - Bruit en 1/f
- Nb > 9%: supraconducteur
 - La valeur de Tc dépend de la concentration relative en Nb

DRTBT, Fréjus, Mai⁸2009

Jonctions tunnel supraconductrices (STJs)

- Nb/Al/Al_{ox}/Al/Nb junctions (e.g., but also Ta or other)
- Quasiparticle trapping by Al traps
- Excess noise compared to

 $\delta E_0 = 2.35\sqrt{\epsilon F E_0}$

- Expect ΔE ≈ 2.5 eV at 6 keV, observe 12 eV
- At low energies, almost statistically limited
- Nice : can usually be operated at 300 mK (³He)

Jonctions tunnel supraconductrices (STJs)

 Résolution en énergie en fonction de l'énergie détectée, comparée à la résolution théorique ultime :

$$\delta E_0 = 2.35\sqrt{\epsilon F E_0}$$

DRTBT, Fréjus, Mai 2009

TES (Transition edge sensors)

- Principe
- α = R/T dR/dT peut dépasser >> 1000 !
- Example simple pixel
- Remarquable résolution en énergie

Senseurs Transition edge (TES)

- Problèmes initiaux:
 - Reproducibilité de la T_c
 - Ajustement possible par implantation ionique (Fe) mais coûteux en temps et en personnel
 - Point de fonctionnement et dynamique si biais en courant
- Avancée apportant la solution à ces problèmes: negative electro-thermal feedback (ETF) par Irwin (1995)
- Régulation voltage bias avec couplage à un bain thermique à T très froid
- En gros, se ramener au cas où l'on maintient l'impédance du senseur fixe
- Signal = Puissance de régulation

DRTBT, Fréjus, Mai 20

Sensors: Transition edge (TES)

- Oustanding energy resolution
- Comparison with best silicon detectors
- Performances similar to WDS (wavelength dispersive)
- Ability to detect environmental effects

MMC (Metallic Magnetic Calorimeters)

- Echantillon paramagnetique dans champ B relativement faible (≈ quelques mT)
- Bühler and Umlauf: un des premiers détecteurs cryogéniques utilisant comme senseur des 4f ions dans un diélectrique : résolution en énergie déjà excellente, mais détecteurs très lents
- En 1993, Bandler et al. : implanter des ions paramagnétiques dans un métal : réponse extrêmement rapide (≈ 10⁻⁷ s)
- Excellente résolution en énergie (≈ 3 eV @ 6 keV)
- Système le plus étudié Au:Er
- Devrait démontrer résolution aussi bonne que TES (≤2eV à 6 keV)

Metallic Magnetic Calorimeters

- Excellente résolution en énergie (≈ 3 eV @ 6 keV)
- Comparable à résolution TES
- Déjà quelques applications (voir talk Mathias Rodrigues)

Meilleures performances actuelles microcalorimètres simple pixel: pas de grosse différence entre les trois principaux senseurs

Utilisation comme détecteur simple photon

• A peu près en même temps par ESA (STJ) et Stanford (TES)

Courbe de lumière 33-ms du pulsar du Crabe

• Observations (TES) dans la banlieue de Stanford...

After Cabrera and Romani (2005)

Du simple pixel à la matrice...

- Matrices S-Cam 1 et S-Cam 3 (ESA)
- Photomultiplicateur avec résolution en position et en énergie...
- Difficulté à étendre à grand nombre de pixels

La caméra S-Cam 3 (ESA)

Image d'un fragment de la comète 73P/Schwassmann-Wachmann

Observations au sol vs. observations en satellite

- Satellite : on s'affranchit des problèmes de transmission à travers l'atmosphère
- Pas le choix pour certaines bandes d'énergie de photons (astronomie X)
- Pour le millimétrique, bandes de transmission et absorption de l'atmosphère (Ph. Camus)
- Appareillage au sol: beaucoup moins cher et beaucoup plus facile à débugger/développer

Du laboratoire à la pré-industrie

- Spécificités équipes de laboratoires vs. installations préindustrielles (e.g. CEA/LETI)
- En laboratoire, définition et test des prototypes des nouvelles techniques, avant passage en production
- Equipements laboratoires : coût d'investissement de plus en plus grand, réalisation des prototypes en collaboration avec centrales de nanotechnologies.
- Exemple Néel, CSNSM, vs. IEF et/ou LPN (ou Stanford nanofabrication facility), vs. LETI ou industriel en contrat CNES
- Autre exemple définition détecteur Ge dans labo, production Canberra-Eurisys

Matrice Bolocam (Glenn, 2002)

$$A = 1 - R - T = \frac{4g_a Z_0 l}{(2 + g_a Z_0 l)^2}$$

$$= 1 - R - T = \frac{4g_a Z_0 l}{(2 + g_a Z_0 l)^2}$$

Matrices pour Olimpo

Télescope Cassegrain submillimétrique, diamètre 2.6 m

- télescope f/D = 3.5 => grand champ (30 arcmin) => angle d'ouverture 16°
- pouvoir de résolution à 2mm : 3.2 arcmin

23-pixel matrices for OLIMPO (CMB)

- Small prototype arrays of 23 pixels @ 300mK
 Frequency channels 500-600 GHz and 380-440 GHz (TBC)
- Resonant cavity design
- Backshort / front distances $\lambda/4$ (2nd wafer)
- Crosstalk < 1%

second dissination (frontio

Thermomètre NbSi

Nb_xSi_{1-x}:

-> 1-5 MΩ adapté à l'électronique de lecture

- -> composition x optimale = f (T_{fonct} = 350 mK)
- -> effet de champ et découplage électron/ phonon

$$\rho(T_{el}, E) = \rho_0 \cdot \exp\left[\left(\left(\frac{T_0}{T_{el}}\right) \cdot \left(1 - \frac{E}{E_c}\right)\right)^n\right]$$
$$E_C = \frac{2 \cdot k_B \cdot T_{el}}{q \cdot L_{LOC}}$$
$$\frac{E^2}{\rho} = G_{e-ph} \cdot \left(T_{el}^5 - T_{ph}^5\right)$$

 $E_{c} \sim 5000$ V/m; $G_{e-ph} \sim 80$ W/cm³/K⁵

Volume de la couche : $\Omega \ge 10 \cdot \frac{P_{el}}{G_{e-ph}} \cdot T_{ph}^{5}$ Distance inter - électrode : $l \ge 20 \cdot \frac{P_{el}}{I \cdot E_c}$

Le XeF₂ se présente sous la forme solide. Il passe à l'état gazeux à environ 3,8 Torr à 25 ° C.

Le silicium se grave de façon isotrope très sélective jusqu'à (1000:1) vis à vis du SiO₂, du nitrure de silicium, de l'aluminium....

Membranes ajourées en nitrure de silicium 4x4 mm épaisseur 500 nm.

Matrice à antenne DCMB

Test matrix (August 2007)

Réponse à la polarisation

(1 mm)

G_{e-ph} = 5gV T⁴. Cooling below 60mK is necessary to reduce electron-phonon coupling.

Superconducting and Anderson insulator NbSi sensors can be tailored for optimal photon absorption (R_{sq} ~377 Ω at 1-10K). This is obtained by choosing the appropriate composition and thickness of the NbSi layers.

204 bolometer arrays with bow tie antennas

- Future CMB experiments: high-resolution anisotropy mapping and polarisation detection → large arrays of antenna-coupled bolometers at low temperature.
- 2 antenna sizes, 2 orientations
- High impedance NbSi

DRTBT, Fréjus, Mai 2009

Matrices ARTEMIS

Développements de matrices pour le satellite Herschel

Detector design. Concepts

8 juin 2005- Développement de large matrice de bolomètres dans le domaine submillimétrique pour l'instrument PACS de la mission Herschel de l'ESA.

Multiplexage, MKIDs et autres...

- Matrices : grand nombre de canaux déjà envisagés par les physiciens (jusqu'à O(10⁶) canaux envisagés à cette école)
- Multiplexage (temps, fréquence, codage, ...) pratiquement nécessaire (D. Prêle)
- Idée très astucieuse des KIDs (Kinetic Inductance Detectors) : circuits résonants désaccordés légèrement par les quasiparticules produites par une interaction (A. Monfardini)

IXO: International X-ray Observatory

Main scientific objectives of IXO

- Evolution of large scale structures (at large redshifts)
 Formation of the first structures and evolution towards the present galaxy clusters
- Nucleosynthesis (synthesis of metals)
- Links between galaxies and Supermassive Black Holes Birth and Growth of black holes ; relations with their host galaxies
- Matter under extreme conditions –Tests of General Relativity

In order to meet these objectives, we need:

A large collection surface & an excellent spectral resolution

Développement de nouveaux types de cryostat

- (Pratiquement) plus de fluides externes (azote et He liquide)
- Contrôle total du cryostat à distance et mode automatique
- Protection et mode dégradé pour parer aux incidents
- 10 mK de température de ligne de base
- l'un des plus importants volumes utiles à 10 mK
- Alain peut débugger et démarrer le cryostat même quand il est au Japon ou au Népal...

DRTBT, Fréjus, Ma

Dilution cryostat: remote and automated

- (Almost) no external fluids
- Fully remote operation possible using internet connection
- 10 mK baseline temperature
- probably present largest volume at 10 mK

- Coût croissant de l'hélium,
 → développement de systèmes sans hélium externe (circuit fermé)
- Prototypes utilisant des tubes pulsés développés par le CEA et le CNRS pour EDELWEISS, Planck, VIRGO
- ULTRACOLD : réduire de façon drastique les vibrations induites par le système de refroidissement par tubes pulsés et pompes turbomoléculaires
 - Compensation active accéléromètres – actuateurs
 - Cryostat dédié avec turbo, tube pulsé et système compensation
- Problèmes similaires dans advanced VIRGO ; satellite Planck : réduction passive des vibrations ; EDELWEISS, EURECA

Ultracold: compensation active des vibrations

Cryostat ULTRACOLD

Etage 50°K

- Atténuation des vibrations via système passif
- Liaisons froides par échange gaz (He)
- Asservissements dynamique via actuateurs piézo et accéléromètres

50°K

°K

ETAPE 1 (validée) : optimisation du système Passif

Innovation (licence CEA-Cryoconcept) : liaison froide via échangeur gaz à 50K et 4K

Etage 4°K

Double beta decay (talk Claudia Nones)

- CUORICINO: largest mass cryogenic experiments (42 kg at T ≈ 10mK)
- Excellent energy resolution
- Now stopped, in preparation of the CUORE experiment (760 kg TeO₂ !)

B3 - LNGS: mounting of CUORE-like modules with SSB

B3 - LNGS test of SSB

B3 - Scatter plot in LNGN test

Cryoelectronics developments

- Challenges in cryoelectronics :
 - Large number of wires
 - heat load constraints
 - development of custom cables and amplification components (FETs)
- High impedance channels (CUORE, EDELWEISS, EURECA) : develop ultra-low noise low dissipation AsGa FETs (LPN Marcoussis, talk Yong Jin)
- Low impedance channels : SQUID electronics (IPHT Jena, MPI Muenchen, Oxford, APC Paris...)
- For both types of channels : multiplexing is mandatory for most matrix applications
- Cryogenic detectors : relatively slow signals (talk Jules Gascon) →
 - digitize very early (close to cryostat) the analog signals
 - digital filter (after anti-aliasing low-cost filter...)
 - digital trigger

Les « magnificent seven » d'ASPERA

- 1) What is the Universe made of ? In particular: What is dark matter?
- 2) Do protons have a finite life time?
- 3) What are the properties of neutrinos? What is their role in cosmic evolution?
- 4) What do neutrinos tell us about the interior of the Sun and the Earth, and about supernova explosions?
- 5) What is the origin of cosmic rays? What is the view of the sky at extreme energies?
- 6) What will gravitational waves tell us about violent cosmic processes and about the nature of gravity?
- Référence sur le web: http://www.aspera-eu.org/images/stories/files/Roadmap.pdf

Selection of projects

- The Roadmap Committee proposes seven types of major projects, on different time scales:
- • Ton-scale detectors for dark matter search
- • A ton-scale detector for the determination of the fundamental nature and mass of neutrinos
- A Megaton-scale detector for the search for proton decay, for neutrino astrophysics and for the investigation of neutrino properties
- • A large array of Cherenkov Telescopes for detection of cosmic high energy gamma-rays
- • A cubic kilometre-scale neutrino telescope in the Mediterranean
- • A large array for the detection of charged cosmic rays
- • A third-generation underground gravitational antenna

Les questions de « Cosmic Vision »

- What are the conditions for life and planetary formation?
- How does the Solar System work?
- Searching for gravitational waves with LISA
- What are the fundamental laws of the Universe?
- How did the Universe begin and what is it made of? (What is the nature of Dark Matter and Dark Energy)

Some comments (1)

- High scientific priority given to Dark Matter search (first chapter and first installation quoted in the roadmap)
- But decision for tonne-scale Dark Matter experiment delayed as field not considered as mature enough yet for a firm commitment.
- Decision on which first large-scale DM experiment expected around 2011

Some comments (2)

- Two main techniques recommended and still considered in competition :
 - Xe (or possibly Ar) double-phase TPCs
 - Cryogenic detectors
- Cost of typical tonne-scale experiment 50-100
 M€ range : expensive considering the size of the community concerned
- R&D effort : directional detectors (not large scale until clear detection or LHC signal)

ASPERA funding scenario

Organisation de la communauté LTD

- Succès des deux réseaux européens (FP4 et FP5) « Applied cryodetectors »
 - Échange très libre d'informations
 - Source de collaborations ultérieures
- Pas de financement accordé aux demandes FP6 et FP7 (ITN)
- Proposition de GDR (ou GIS) pour coordonner les efforts des groupes français LTD
- Mise en place dès 2010 ?

Pour en savoir plus...

"Cryogenic Detectors", ed. Christian Enss, Topics in Applied Physics, (Springer, Heidelberg, 2005)

"Low-temperature physics", Christian
Enss and Siegfried Hunklinger,
Topics in Applied Physics, (Springer,
DRTBT, Freidelberg, 2005)

Pour en savoir plus (2)...

Proceedings of the 12th Workshop on Low Temperature Detectors (LTD-12) ed. M.Chapellier and G. Chardin, J. Low Temp. Phys. 151 (2008)

Proceedings of the 11th Workshop on
Low Temperature Detectors (LTD-11)
ed. M. Ohkubo, K. Mitsuda and H.
Takahashi, Nucl. Instr. Meth. A 559 (2006)
DRTBT, Fréjus, Mai 2009

Conclusions

- Les détecteurs cryogéniques sont maintenant des outils pratiquement indispensables dans plusieurs domaines
- Bien que difficile, le champ devient peu à peu accessible aux utilisateurs non (peu) spécialistes (ADR, pulsetubes, réfrigérateurs à dilution automatisés, SQUIDs plus maniables...)
- L'un des défis majeurs consiste maintenant dans le développement de matrices de grande taille
- Les défis en astrophysique, astroparticules ou la physique des particules sont d'excellents « drivers » pour le développement de nouvelles techniques
- Probablement important de considérer la communauté française des LTDs globalement et qu'elle se coordonne via un GDR

Matière Noire: nature inconnue, question scientifique « tout ou rien »

Collision de galaxies « Bullet cluster »

• Les masses vues par rayonnement X (gaz) et par effet de lentille gravitationnelle sont-elles au même endroit ?

• Coup important (décisif ?) contre MOND (gravité modifiée)