Perspectives nouvelles en électronique pour bolomètres

- de la technologie et physique mésoscopique à la cryoélectronique

Yong JIN CNRS/LPN, Marcoussis

DRTBT09, Fréjus, le 10 - 15 mai 2009

Plan

• Introduction

- 2DEG et HEMT

- HEMTs commerciaux -> dispositifs mésoscopiques -> cryoélectronique

• HEMT balistique 1D et multiplexage d'une matrice de bolomètres

- Conducteur balistique 1D → HEMT balistique
- Réalisation et résultats expérimentaux
- Confirmation par le formalisme Landauer-Buttiker
- Application dans le multiplexage d'une matrice de bolomètres

• HEMTs à très bas bruit et à faible puissance dissipée

- Réalisation et caractérisations
- Résultats expérimentaux et comparaisons
- Récents résultats
- Conclusions et perspectives

Critère de base du FET

- Gain en puissance $A_{\rm P}$ et gain en tension $A_{\rm V}$

$$A_{P} = \frac{\delta V_{out} \times \delta I_{DS}}{\delta V_{in} \times \delta I_{GS}}, \qquad A_{V} = \frac{\delta V_{out}}{\delta V_{in}}$$
$$A_{P} \text{ et } A_{V}$$
$$A_{P} = \frac{\delta V_{out} \times \delta I_{DS}}{\delta V_{in} \times \delta I_{GS}} = A_{V} \times \frac{\delta I_{DS}}{\delta I_{GS}} = A_{V}^{2} \times \frac{\delta R_{in}}{\delta R_{out}}$$

- $A_V > 1 \rightarrow A_P > 1$ car $\delta R_{in} >> \delta R_{out}$ et $\delta I_{DS} >> \delta I_{GS}$

- Par contre $A_P > 1 \rightarrow A_V$?
- Gain en tension intrinsèque A_v et paramètres électriques:

$$g_{\rm m} = \partial I_{\rm DS} / \partial V_{\rm GS}, \ g_{\rm d} = \partial I_{\rm DS} / \partial V_{\rm DS},$$

$$A_V = \partial V_{\rm DS} / \partial V_{\rm GS} = g_{\rm m} / g_{\rm d} > 1$$

 $\Rightarrow \nearrow g_{\rm m} + \searrow g_{\rm d}$

Important :

fort gain en tension

faible bruit équivalent en tension à l'entrée

HEMT commerciaux \rightarrow **Dispositifs** méso \rightarrow **Cryoélectronique**

- HEMTs commerciaux

avantages : hautes mobilité électronique et densité --> Hyperfréquences

défauts : trop grande différence μ entre le type n et le type p courant de fuite de grille l_{gs} et bruit 1/f

- 2DEG → Dispositifs pour la Physique Mésoscopique
 Transport électronique en régime balistique
 Température de fonctionnement jusqu'à 30 mK

- Dispositifs Mésoscopiques \rightarrow HEMTs cryogéniques verrous technologiques : I_{qs} et 1/f

Plan

Introduction

- 2DEG et HEMT

- HEMTs commerciaux -> dispositifs mésoscopiques -> cryoélectronique

• HEMT balistique 1D et multiplexage d'une matrice de bolomètres

- Conducteur balistique 1D → HEMT balistique
- Réalisation et résultats expérimentaux
- Confirmation par le formalisme Landauer-Buttiker
- Application dans le multiplexage d'une matrice de bolomètres
- HEMTs à très bas bruit et à faible puissance dissipée
 - Réalisation et caractérisations
 - Résultats expérimentaux et comparaisons
 - Récents résultats
- Conclusions et perspectives

Conducteur balistique quantique 1D par QPC 1/2

- Quantum Point Contact (QPC) sur un gaz d'électrons bidimensionnel (2DEG)

Potentiel électrostatique et relation de dispersion

 $eV(x,y) = eV_{o}(V_{GS}, V_{DS}) + \frac{1}{2} m \omega_{y}^{2} y^{2} - \frac{1}{2} m \omega_{x}^{2} x^{2}$ $E_{n}(k_{x}) = eV_{o}(V_{GS}, V_{DS}) + (n - \frac{1}{2})\hbar\omega_{y} + \frac{\hbar^{2}k_{x}^{2}}{(2m^{*})}$

Formalisme de Landauer-Büttiker (1D)

 $I = 2e/h \int \{ \Sigma_n T_n(E) [f^+(E) - f^-(E)] \} dE$ $T_n(E) = [1 + \exp(-\pi \varepsilon_n)]^{-1} \qquad Phys. Rev. B41, 7906 (1990)$ $\varepsilon_n = 2[E - \hbar\omega_y (n^{-1/2}) - eV_o] / \hbar\omega_x$

Conducteur balistique quantique 1D par QPC 2/2

$$I_{DS} = \frac{2e}{h} \sum_{n} \frac{\hbar\omega_X}{2\pi} \ln\left(\frac{1 + \exp(2\pi(\mu_S - E_n)/\hbar\omega_X)}{1 + \exp(2\pi(\mu_D - E_n)/\hbar\omega_X)}\right)$$

Forte variation de $I_{DS} \sim E_n(V_{GS})$ quand $E_n \sim (\mu_S + \mu_D)/2 \rightarrow \nearrow g_m$

▶ Non linéarité de $I_{DS} \sim \mu_D(V_{DS})$ quand $\mu_D < E_n < \mu_S \rightarrow \Im g_d$

Réalisation

Transconductance mesurée $g_{\rm m} = \partial I_{\rm DS} / \partial V_{\rm GS}$

La transmission est modulée par les sous-bandes 1D $\Rightarrow \nearrow g_m$

Conductance de sortie mesurée $g_d = \partial I_{DS} / \partial V_{DS}$

L'injection d'électrons est contrôlée par les sous-bandes 1D \Rightarrow non linéarité $\Rightarrow \ge g_d$

Confirmation par le formalisme Landauer-Büttiker

$$I_{DS} = \frac{2e}{h} \sum_{n} \frac{\hbar \omega_X}{2\pi} \ln \left(\frac{1 + \exp(2\pi(\mu_S - E_n)/\hbar \omega_X)}{1 + \exp(2\pi(\mu_D - E_n)/\hbar \omega_X)} \right) \qquad \mu_S = E_F \qquad \mu_D = E_F - eV_{DS}$$
$$E_n = E_{no} + \alpha(V_{DS}) + \beta(V_{GS})$$

Gain en tension

- Pour un point de fonctionnement $V_{\rm DS} = 7 \text{ mV}, I_{\rm DS} = 0,17 \text{ }\mu\text{A}, P = 1,2 \text{ }n\text{W}$ $g_{\rm m} = 20 \text{ }\mu\text{S}, g_{\rm d} = 10 \text{ }\mu\text{S} \Rightarrow A_V = g_{\rm m}/g_{\rm d} = 2$
- Dans la région de la première sous-bande 1D :

 $A_{V} = g_{m}/g_{d} > 1$

Appl. Phys. Lett. 97, 233505 (2010)

Réduction quantique du bruit de grenaille

 $<(\Delta I)^{2}> = 2 e I \Delta f \frac{\sum T_{n}(1-T_{n})}{\sum T_{n}}$ PRL, 76, 2778, 1996

FET balistique est intrinsèquement parfait, mais, extrinsèquement...

Application dans le multiplexage d'une matrice de bolomètres

Collaboration : Alain BENOIT, Institut Néel/CNRS

- •Cahier des charges de l'interrupteur
- Faible capacité C_{GS} <1 fF
- Faible R_{on} (par rapport à $R_{bolomètre}$)
- Faible I_{GS} (bruit de grenaille) < 1pA
- Faible puissance dissipée

	HEMT	MESFET	QPC CNRS/LPN	
<i>T</i> = 4.2 K	FHX35LG	CF739		
	Fujitsu	Infineon		
V _{GS-ON}	- 0.2 V	- 1.5 V	+ 100 mV	
V _{GS-OFF}	- 0.7 V	- 2.3 V	- 100 mV	
R _{ON}	< 10 kΩ	< 10 kΩ	~ 10 kΩ	
I _{GS-ON}	X	X	< 0.1 pA	
I _{GS-OFF}	I _{GS-OFF} ~ 10 pA		< 0.1 pA	
C _{GS}	0.1/0.3 pF	X	< 1 fF	

Rev. Sci. Instrum. 78, 035104 (2007)

Plan

• Introduction

- 2DEG et HEMT

- HEMTs commerciaux \rightarrow dispositifs mésoscopiques \rightarrow cryoélectronique

• HEMT balistique 1D et multiplexage d'une matrice de bolomètres

- Conducteur balistique 1D → HEMT balistique
- Réalisation et résultats expérimentaux
- Confirmation par le formalisme Landauer-Buttiker
- Application dans le multiplexage d'une matrice de bolomètres

• HEMTs à très bas bruit et à faible puissance dissipée

- Réalisation et caractérisations
- Résultats expérimentaux et comparaisons
- Récents résultats
- Conclusions et perspectives

Réalisation

Caractéristique I-V

Évolution en temps

Spectre de bruits

Aire de la surface de grille $1.8 \times 10^4 \,\mu\text{m}^2$ (4 μ mx4.55mm)

Résultats expérimentaux et comparaisons

Transisto r	т	Puissance dissipée	Capacité d'entrée	Bruit en tension à 1kHz nV/sqrt(Hz)	Minimum de bruit en tension nV/sqrt(Hz)	Courant de fuite de grille pA	Bruit en courant fA/sqrt(Hz)
Si JFET InterFET	> 100K	20 mW	~ 10 pF	0.8	0.8 f > 100 Hz	10 à 300 K	1.5 à 300 K
HEMT Agilent	4K	500 µW	20 fF	~16	0.7 f = 1 – 3 MHz	~ 2000	25
HEMT LPN	4K	< 100µW	30 pF	1.8	~ 0.18 f >> 100kHz	< 0.1	< 0.18

Récents résultats :

Hétérostructure + configuration : → I_{gs} < 0.1 pA + réduction du bruit 1/f :

Aire de la surface de grille µm²	Bruit équivalent à l'entrée @ 1 kHz nV/√Hz	Bruit équivalent à l'entrée blanc nV/√Hz
3.2x10 ⁴	0.80	~ 0.16
1.4x10 ⁵	0.50	≤ 0.16

Conclusions et perspectives

- Technologies de fabrication
- Physique mésoscopique **>** FET balistique
- Réductions de l_{gs} et bruit 1/f dans des HEMTs cryogéniques
- Déterminer prochainement le protocole de fabrication
- Optimiser l'hétérostructure et la configuration de grille
- Répondre aux besoins spécifiques

Y. J.

A. Benoit (IN/CNRS) G. Chardin (IN2P3)

C. Pigot (CEA)

Cette étude a été financée en partie par :

- DCMB (contrat CNES);
- ArTeMiS (ANR)
- BDI CNRS-CEA pour E.G dans le cadre du

programme EDELWEISS, soutenue 2008

- ULYSSE I&II contrat Triangle de la

Physique pour Y.L, 2008-2010

- Barrette des HEMTs pour BOLOX

contrat CEA, 2009

- BDI CNRS-CEA (à partir du 01-10-2009)

DRTBT09, Fréjus, le 10 - 15 mai 2009