Détecteurs cryogéniques de neutrons

Pierre de Marcillac, IAS, Orsay

Ecole thématique DRTBT2012

La Londe les Maures

22 mai 2012

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)
- □ Le développement de détecteurs cryogéniques
 - Motivations
 - Principes de base
 - Etat des lieux
 - □ Outre Atlantique
 - R&D IAS
 - prospectives
- Sources de neutrons
- Références

□ La détection « cryogénique » des neutrons

Généralités sur les neutrons

- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)
- Le développement de détecteurs cryogéniques
 - Motivations
 - Principes de base
 - Etat des lieux
 - Outre Atlantique
 - R&D IAS
 - prospectives
- Sources de neutrons
- Références

Neutrons

1. la découverte (1932)

✓ Réaction (α ,n)

✓ Chadwick prouve que l'interprétation correcte de la

- réaction ⁴He+⁹Be (\rightarrow ¹²C+n) est l'émission d'une particule
 - o de charge nulle
 - à peine plus lourde que le proton Mn~939.5653 MeV/C² Mp~938.2720 MeV/C²

(Mn/Mp~1.0014)

Sir James Chadwick (1891-1974)

 \rightarrow fort pouvoir de pénétration dans la matière

 \rightarrow instabilité du neutron libre

(τ~15mn; n→p+e⁻+v_e) s transfert cinématique très e

→ transfert cinématique très efficace sur les cibles hydrogénées

le générateur historique, enfin une relique non radioactive ! (T_{1/2}(²¹⁰Po)=138 jours)

Neutrons

2. Classification

Neutrons

3. Sections efficaces

interactions de nature probabiliste (cf. photons)
probabilité d'interaction des neutrons selon une réaction donnée:

L'outil Sigma du NNDC (Brookhaven):

Plan

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)
- Le développement de détecteurs cryogéniques
 - Motivations
 - Principes de base
 - Etat des lieux
 - Outre Atlantique
 - R&D IAS
 - prospectives
- Sources de neutrons
- Références

- ✓ diffusion élastique (n,n)
- ✓ diffusion inélastique (n, n')
- \checkmark capture radiative (n, γ)
- réactions nucléaires de capture:
 (n,p), (n,t), (n,α)
- ✓ fission (n, f)
- ✓ spallation

Diffusion élastique (n,n)

1. Principes

Diffusion élastique (n,n) 2. Spectres de reculs réels

Exemple sur le dispositif ROSPEC (kit de 6 compteurs proportionnels)

Théorie Mesure Sphère remplie de H_2 , 10 atm Réponse du compteur SP2-10 à des neutrons de 1,2 MeV 300 MCNPX MCNPX + effets de champ 25 mesures LANL canal 150 Coups 100 50 0.4 0.6 0.8 1.2 1.4 Energie des protons (MeV)

 → dégradation de la réponse théorique (rectangulaire) par des effets instrumentaux: effets de bord, résolution...

Protons de recul • Assez bon" sur faisceau mono-En, mais dilution importante du signal • forte dégénérescence de la réponse en "champ" neutronique: pour une impulsion donnée, on ne connait que l'énergie minimale du neutron détecté. d'après J.Groetz & M.Benmsobah, 2007

Diffusion inélastique (n,n')

 $E_{\Gamma 1}$ =13.26keV (3µs) , $E_{\Gamma 2}$ =68.75keV (1.7ns)

http://arxiv.org/abs/1103.4070v3

Capture radiative (n,γ)

Réactions nucléaires de capture (n,p), (n,t), (n, α)

Trio de réactions ³He+n \rightarrow ³H+p Q = 0.764MeV¹⁰B+n \rightarrow $\begin{cases} ^{7}Li+\alpha & Q = 2.792MeV \\ ^{7}Li^{*}+\alpha & Q = 2.310MeV \end{cases}$ ⁶Li+n \rightarrow ³H+ α Q = 4.783MeV

✓ Les produits de la réaction sont des particules de haute énergie, fortement ionisantes, facilement détectables:
 →incorporation dans ~tous les types de détecteurs traditionnels gaz : ³He,¹⁰B (BF3) solides, liquides:¹⁰B & ⁶Li
 ✓ section efficace élevée pour les neutrons thermiques, n_{th}
 →compteurs de neutrons "modérés"
 →capture de n_{th} dans des blindages
 ✓ section efficace décroissant fortement avec l'énergie (~1/v_p)

une mesure directe et immédiate de l'énergie du neutron capturé !

 $A_{au\,repos} + n \longrightarrow B + C$

connu mesurés

 $E_n + Q = E_A + E_B \longrightarrow E_n$

déduit

✓ précision ?✓ efficacité ?

Le top des sandwiches

5 Front surface barrier detector

pour E_n : 100keV-15MeV Résolution FWHM ~50 keV & efficacité (0.1%) (TBC !)

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)

Le développement de détecteurs cryogéniques

- Motivations
- Principes de base
- Etat des lieux
 - Outre Atlantique
 - R&D IAS
- prospectives
- Sources de neutrons
- Références

Les spectromètres "traditionnels" de neutrons rapides

Table 1

Neutron spectrometer characteristics

Spectrometer					Typical characteristics for		
No.	Туре	Ref.	Energy range (MeV)	Energy (MeV)	Resolution (FWHM)	Detection efficiency	
1	Recoil proportional counter	[27]	0.05-5	1	10% ^a	3%	
2	Organic scintillator	[31]	2-150	8	4% ^a	20%	
3	Recoil proton telescope	[45]	1-250	60	4% ^a	< 0.05%	
4	Capture-gated	[49]	1-20	5	50% ^a	1%	
5	³ He gridded ionization chamber	[61]	0.05-10	1	2% ^a	0.3%	
6	³ He-semiconductor sandwich	[64]	0.1-20	1	50 keV ^a	0.1%	
7	Diamond semiconductor	[68]	8-20	14	1% ^b	1%	
8	Time-of-flight	[74]	1-15	2.5	5% ^c	$0.05 \mathrm{cm}^{-2}$	
9	Foil radioactivation	[79]	0.2-20		_	_	
10	Superheated drop (bubble)	[82]	0.1-20		—	_	
11	Multisphere	[91]	10^{-8} -200	—		_	

^a Pulse height resolution.

^bEnergy resolution.

^cTime-of-flight resolution.

Toutes les techniques... sauf les cryos !

Neutron spectrometry–historical review and present status, F.D. Brooks , H. Klein, NIMA 476 (2002) 1-11

et ~ partout (ISS, satellites, pôles, montagnes, souterrains...)

Un « bon » spectromètre: tout dépend de l'usage !

Métamorphose d'un sandwich...

L'espoir d'une haute résolution, une histoire de quanta

		Dépense énergétique	
Détecteur	Produits de l'interaction	par	
		quantum d'information (QE).	
Scintillateur	Photons visibles	100 eV→1 keV	
Compteur proportionnel	Ions	10 eV→30 eV	
Semi-conducteur	Paires électrons-trous	3 eV-4 eV	
STJ : Jonction tunnel supra	Quasi-particules (« paires de Cooper » brisées)	$10^{-3} \mathrm{eV}$	
Bolomètre à cible isolante	Phonons	10 ⁻⁵ eV à 10 ⁻⁴ eV	
Bolomètre à cible métallique	Excitation d'électrons de conduction	<< 10 ⁻⁵ eV	

D'après Elvire Leblanc (2003)

Détecteurs refroidis Contribution statistique au pouvoir ultime de résolution :

 $E_{\Delta E} \approx \sqrt{n} \quad avec \quad n = E_{OE}$

Plan

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)

□ Le développement de détecteurs cryogéniques

Motivations

- Principes de base
- Etat des lieux
 - Outre Atlantique
 - R&D IAS
- prospectives
- Sources de neutrons
- Références

- ✓ Radioprotection
- ✓ Matière Noire
- ✓ Boron Neutron Capture Therapy ?
- ✓ Bits d'erreur /mémoires

Motivations

1. Radioprotection

Facteurs de pondérations biologiques

Type de rayonnement	Facteur de pondération pour les rayonnements, w _R
Photons	1
Électrons" et muons	1
Protons et pions chargés	2
Particules alpha, fragments de fission, ions lourds	20
Neutrons	Une fonction continue de l'énergie des neutrons (voir la figure 4.1 et l'équation 4.3)

(recommandations CIPR 2007) Commission Internationale de Protection Radiologique

- ✓ radioactivité naturelle
- ✓ rayonnement cosmique

RadioprotectionMonitoring du fond neutronssystème à sphères de Bonner HERMEIS IRSN & ONERA

Observatoire du Pic du Midi (2011)

→ Mesure de la modulation, après une déconvolution complexe, d'un fond "type", donné *a priori*

Spectre Atmosphérique des Rayons Cosmiques

Motivations

2. "Matière Noire"

- ✓ voir cours de Jules Gascon
- ✓ une même signature: des atomes de reculs (mais des σ très ≠: barn / 10⁻²⁰ barn !)
- ✓ le fond neutron rapide des expériences souterraines: une donnée très recherchée !

Matière Noire

Des comptes d'apothicaire...

Pia Loaiza @ TAUP 2011

Matière Noire

Motivations

3. BNCT ?

 ✓ BNCT≡Boron Neutron Capture Therapy
 ✓ Traitement de tumeurs difficilement opérables
 ✓ Fixation de molécules borées sur les cellules malignes
 ✓ irradiation par neutrons
 "épithermiques" (E≤ qq. 10keV)
 ✓ n+¹⁰B→⁷Li+α, Q=2.31MeV

Aide à la caractérisation du faisceau par un bon détecteur de neutrons rapides ?

Pour un rapport sur la BNCT en 2011, voir: ✓ la présentation de F.Wagner @ FNDA2011 ✓ la page wikipedia, conseillée.

R.F. Barth et al., Scientific American, 1990

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)
- Le développement de détecteurs cryogéniques
 - Motivations

Principes de base

- Etat des lieux
 - □ Outre Atlantique
 - R&D IAS
- prospectives
- Sources de neutrons
- Références

(⁶Li) Bolomètres et capture de neutrons

Spectroscopie de neutrons rapides & bolomètres ⁶LiF

Petit historique

□ La détection « cryogénique » des neutrons

- Généralités sur les neutrons
- Interactions des neutrons avec la matière
- □ La détection traditionnelle (@ 300K)
- Le développement de détecteurs cryogéniques
 - Motivations
 - Principes de base
 - Etat des lieux
 - Outre Atlantique
 - R&D IAS
 - prospectives
- Sources de neutrons
- Références

Outre-Atlantique Spectroscopie n dans le Wisconsin

Fig. 2. Superimposed pulse height spectra of thermal neutrons, 5305 keV alpha particles, and monoenergetic fast neutrons at 3996, 5167, and 7223 keV. The labeled energies are the total energy deposited in the bolometer. Each spectrum is normalized to the exposure time of the 7223 keV neutrons.

 ✓ Étude systématique de # configurations de bolomètres LiF

✓ cube ⁶LiF (99,99% !) de (6mm)³
✓ Résolution 78keV FWHM à
5.3MeV @ Tbain=328mK (ADR)
✓ 1ère preuve de la faisabilité
spectroscopique sous faisceau n

Outre-Atlantique Spectroscopie n en Californie (¹⁰B)

T=148mK, Mo/Cu TES

0.25 mm

 $1 \,\mathrm{mm}$

TiB₂

TiB₂ absorber for neutron detection: large heat capacity per unit mass (metal) $C_{absorber} = 10 \text{ nJ/K}$ $m_{abs} = 4 \text{ mg}$ Élargissement Doppler Thermal neutrons spectrum

T. Niedermayr et al., 2004

"UltraSpec" -R&D awards 2006 - brevet 2008 - ADR & pulse tube - cible interchangeable pour spectroscopies

- gammas et neutrons
- licence ?

Outre-Atlantique Spectroscopie n en Californie (⁶Li)

 $^{6}Li + n \rightarrow ^{3}H + \alpha \qquad Q = 4.783 MeV$

Z, W, Bell et al., 2005

Outre-Atlantique

Mesures DC

Bolomètres fonctionnant en mode ESR: « Electronic Substitution Radiometry »

L'énergie du paquet de particules absorbé au niveau du bolomètre est déduite de l'énergie injectée par effet Joule (dans une résistance couplée au bolomètre) produisant la même élévation de température...

✓ Radiomètre n_{th} (NIST/Univ. Indiana; Z. Chowdhuri et al., in RSI 2003)

- mesure de flux de neutrons thermiques > 10⁵ s⁻¹ avec une précision absolue de 0.1 %
- Bolomètre en alliage Li-Mg (⁶Li_{0.74}Mg_{0.26}) refroidi à 2K

	 La détection « cryogénique » des neutrons Généralités sur les neutrons Interactions des neutrons avec la matière 			
	La détection traditionnelle (@ 300K)			
	Le développement de détecteurs cryogéniques			
	Motivations			
	Principes de base			
	Etat des lieux			
	Outre Atlantique	Performances d'un bolomètre de 0.5g en 6LiF Calibration à l'IRSN, Cadarache (installation AMANDE)		
	R&D IAS		inton, oat	
prospectives		Bolomètres massifs scintillants en LiF		
	Sources de neutrons	un detecteur d	e 16g en L 32g	IF naturel
	Déférences		32g enric	chi en ⁶ LiF
	References	Cibles alternatives	U	
		Prospectives		

= présentation @ FNDA2011

Un spectromètre de neutrons transportable (thèse, J. Gironnet, 2010)

bolomètre 0.5g ⁶LiF (⁶Li≈95%)

...dans un cryostat 300mK ...

Réfrigérateur ³He

Calibration @ AMANDE (IRSN, Cadarache)

Spectromètre 0.5g ⁶LiF @ 430mK

détecteur

Observation de « pics neutrons »

Tendance générale (calibration à partir du pic des thermiques)

Restitution de l'énergie du neutron avec précision...

Résolution ΔE_{FWHM}

Efficacité de détection dans LiF 1. D'après les tables

Efficacité de détection dans LiF

2. Fluences

Discussion / Résolution sources d'élargissement de ΔE_{FWHM} ?

Discussion 1. Effet de taille & d'enrichissement

Discussion

2. partition de l'énergie cinétique

Discussion

3. Thermalisation à 100% ?

Wavelength [nm]

Thermoluminescence @ $300K \rightarrow perte d'énergie à TBT$

Thermoluminescence HT de LiF:Mg, Cu, P. (irradiation bêta 50µGy; pente de réchauffage 9°C/sec

- ✓ Le LiF est utilisé en dosimétrie
- ✓ E_{qap}~12eV

 ✓ lecture par thermo-luminescence de la dose reçue

✓ pastilles de LiF fritté, vendues sous les appelations TLD100 (%naturel), TLD600 (95%,6Li), TLD 700 (99% 7Li)

✓ sans compter la partie BT de la thermoluminescence, également perdue à TBT

Thermoluminescence BT de LiF:Na (irradiation e- de 30keV @ 6K; réchauffage 10K/mn)

Bolomètres Scintillants

Bolomètres Scintillants en LiF: 16g de LiF naturel (2003)

Bolomètres Scintillants en LiF: 32g de LiF naturel (2007)

20mK

2 n thermiques, 1 n rapide & 1 y dans le détecteur LiF

Fond Type

Neutrons rapides

Enseignements tirés de la combinaison LiF & saphir ?

Bolomètres scintillants en LiF 32g de ⁶LiF enrichi à 95% (2011)

- résolution 50keV FWHM @ neutrons thermiques
- cible tirée à l'ICMCB (Bordeaux, France)
- échappements par les surfaces observés, compliquant l'analyse !
- chaleur spécifique anormale observée pour une raison inconnue (en cours d'investigation)
- \rightarrow un détecteur lent, mais sensible aux neutrons rapides
- \rightarrow sera testé en souterrain en 2012

Bolomètres Scintillants Cibles alternatives de neutrons

- mauvaises résolutions
- rendement ~ meilleur LiF
- un effet poison a priori intéressant (¹⁵⁷Gd sur n thermiques)

- bonnes résolutions obtenues
 32 keV FWHM sur ²⁴¹Am
 13 keV FWHM à 2.3MeV (¹⁰B)
- bon rendement lumineux

\rightarrow Un échantillon plus récent bientôt testé

\rightarrow Un matériau prometteur !

Prochaines étapes ?

Plan

□ La détection « cryogénique » des neutrons Généralités sur les neutrons Interactions des neutrons avec la matière □ La détection traditionnelle (@ 300K) □ Le développement de détecteurs cryogéniques Output Institution Principes de base Sources transportables □ Etat des lieux sur le site expérimental Outre Atlantique **R&D** IAS \checkmark continuum: prospectives ✓ sources (α , n): ²⁴¹Am-Be,... Sources de neutrons ✓ sources de fission: ²⁵²Cf,...

Références

- ✓ mono-énergétiques
 - ✓ sources de photo-fission (γ ,n)
 - ✓ générateurs
 - ✓ portable (tubes HT)
 - ✓ de table (pyroélectrique) NEW !

Sources à continuum E

(α,n): ²⁴¹Am-Be, ...

Sources à continuum E

Fission: ²⁵²Cf,...

Sources mono-E

✓ photo-fission possible si E_{γ} > $E_{liaison}$ du neutron dans le noyau → cibles légères Deutérium ($E_{liaison}$ =2.226MeV) ou Beryllium ($E_{liaison}$ =1.666MeV) ✓ rendement faible et fond gamma important → utilisation réservée aux détecteurs discriminants (et un très bon test pour les autres !)

Sources mono-E

✓Générateurs D+D→³He (820keV) + n (2.45 MeV)

D+T→⁴He (3.5MeV) + n (**14.1 MeV**)

✓ modèles compacts scellés \leftarrow recherche pétrolière

Figure 2. Schematic design of a sealed-tube neutron generator with a Penning ion source.

Caractéristiques du GENIE 16GT (EADS Sodern) :

Neutron output

- Neutron Energy: 14 MeV (2.5 MeV for D-D)
- Neutron yield: up to 2.10⁸ n/s (2.10⁶ n/s for D-D)
- Typical tube lifetime: 4000 working hours (for 1.10⁸ n/s) or 8000 working hours (for 5.10⁷ n/s)

Pulsing parameters

- Pulse rate: 10Hz to 10kHz
- Duty factor: 5% to 100%
- Rise and fall time <1.5 μs

Electrical

- Accelerator Voltage: Up to 110kV
- Maximum Beam current: 80µA
- Power supply: 220V/50Hz or 110V/60Hz
- 2 synchronisation output (TTL) are provided.

Mechanical

- Neutron Emitting module: 8kg
- MC16: Rack 19"/3U (133 mm) Length=680 mm 23 Kg

Sources mono-E Générateurs pyroélectriques

 $\frac{1}{120} + \frac{1}{140} + \frac{1}{160} + \frac{1}{120} + \frac{1}{140} + \frac{1}{160} + \frac{1$

Sur le même principe pyroélectrique, un géné X miniature (COOL-X, AmpTek)

So what...

Corrélations $n_{thermiques}/n_{rapides}$ établies pendant la phase de calibration avec la source à tube HT, puis contrôle des seuls $n_{thermiques}$?

Conclusions

- ✓ une spectrométrie (neutron) difficile / α , X, γ ,...
 - ✓ variété des interactions
 - ✓ multiplicité des cibles pour un même détecteur
- ✓ les détecteurs cryogéniques de neutrons ont (auront ?)

des avantages indéniables:

- ✓ incorporation du « convertisseur de neutron » dans le détecteur
- ✓ haute résolution
- ✓ montages complexes faisables a priori par collages (bien pensés…)
- ✓ sommation naturelle des dépôts d'énergie laissés indistinctement par les interactions (élastiques, captures)→ meilleur contraste possible raie/continuum, pourvu que les détecteurs ne soient pas trop petits
- ✓ possibilité de détecter et mesurer 1 par 1 des neutrons rarissimes

quelques inconvénients:

- ✓ la « peur » de la cryogénie
- ✓ leur coût
- ✓ leur lenteur
- ✓ une communauté encore peu avertie de leurs mérites potentiels !

Pour en savoir plus...

❑ Ateliers FNDA (Fast Neutron Detectors and their Applications) 1ère édition en 2006 (Le Cap) & 2^{nde} édition: 2011 (Israël)

Thèses

□ Johann Gironnet (2010, Université Paris Sud)

Spectrométrie de neutrons rapides par bolomètres à cible lithium pour la réduction du fond des expériences de détection directe de la matière noire

□ Ionel Dragos Hau (2006, University of California)

Superconducting High resolution Fast-Neutron Spectrometers

G. Knoll , Radiation Detection and Measurement

Chap. 14 (Slow Neutron Detection Methods) & Chap. 15 (Fast Neutron detection and Spectroscopy)

E. Segré, Experimental Nuclear Physics , Vol II 1953

□ Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, AIEA, Technical Reports Series n° 318 (1990) & 403 (2001)

Remerciements

à l'IAS, les permanents, retraités, docs et post-docs

- Noël Coron, Jacques Leblanc, Thierry Redon
- Johann Gironnet
- Lidia Torres
- Maria Martinez
- I'équipe de Vincent Gressier à l'IRSN Cadarache (Calibration AMANDE)
- I'équipe de Matias Vélazquez à l'ICMCB de Bordeaux (Cristallogénèse)
- □ Patrick Pari (CEA/SPEC) : cryogénie T<100mK
- □ les collaborations passées et présentes
 - IPNL (2g 6LiF)
 ROSEBUD (32g natLiFau Laboratoire Souterrainde Canfranc)
- □ les programmes du CNRS (PNCG, R&D CSAA, Particules et Univers)
- □ le système de bourses BDI du CNRS[†]
- □ votre patience

Générateur pyroélectrique de table

Génération de neutrons pendant la rampe de T

Film à télécharger sur

http://www.nature.com/nature/journal/v434/n7037/suppinfo/nature03575.html

Observation of nuclear fusion driven by a pyroelectric crystal B. Naranjo, J.K. Gimzewski & S. Putterman Nature 434, 1115-1117(28 April 2005)